Abstract:
An electrode for an electron gun and an electron gun using same are provided which make use of stable carbon material having small work function and which permit orientation control to be achieved and which can be manufactured at a low cost. An electrode for an electron gun uses carbon electrode(s) formed from amorphous carbon and carbon nanotubes or carbon nanofibers and molded in linear shape. The carbon electrode is obtained by mixing a resin composition such as chlorinated vinyl chloride resin, furan resin, etc., which forms non-graphitizing carbon after carbonizing, with a carbon powder such as carbon nanotubes or carbon nanofibers and, after extrusion, molding and carbonizing the molding obtained.
Abstract:
A multipole lens producing less magnetic field variations is offered. Also, a charged-particle beam instrument fitted with such multipole lenses is offered. The multipole lens has plural polar elements, an annular holding member, and an annular yoke disposed outside the holding member. Each polar element has a held portion and a base-end portion. The held portions of the polar elements are held by the holding member. The yoke is magnetically coupled to the base-end portions of the polar elements. The yoke is provided with openings extending circumferentially. The base-end portions of the polar elements are positioned in the openings.
Abstract:
A field emission display with a double gate structure and a method of manufacturing therefor are provided. The field emission display includes a substrate, a cathode layer formed on the substrate, a gate insulating layer which is formed on the substrate and the cathode layer and has a cavity through which part of the cathode layer is exposed, a field emitter provided on the cathode layer exposed on the bottom of the cavity, a first gate layer which is formed in the gate insulating layer and in which a first gate hole having a diameter greater than that of the cavity is formed not to be exposed to an inner surface of the cavity, and a second gate layer which is formed on the gate insulating layer and in which a second gate hole is formed in a portion that corresponds to the cavity.
Abstract:
The disclosed method for forming a field emission display includes forming a cathode and an anode, forming a plurality of photoresist posts over the cathode, and coating the posts with a coating material. The coating material forms sidewalls around the posts. The photoresist posts may then be removed from within the sidewalls. The anode may then be fitted onto the sidewalls so that the sidewalls function as spacers in the field emission display.
Abstract:
An electrode for an electron gun and an electron gun using same are provided which make use of stable carbon material having small work function and which permit orientation control to be achieved and which can be manufactured at a low cost. An electrode for an electron gun uses carbon electrode(s) formed from amorphous carbon and carbon nanotubes or carbon nanofibers and molded in linear shape. The carbon electrode is obtained by mixing a resin composition such as chlorinated vinyl chloride resin, furan resin, etc., which forms non-graphitizing carbon after carbonizing, with a carbon powder such as carbon nanotubes or carbon nanofibers and, after extrusion, molding and carbonizing the molding obtained.
Abstract:
A method of manufacturing an electron gun (10) for use in a color display tube (1) is described. The electron gun (10) is provided with an additional electrode (44), positioned between the anode electrode (21a) and the centering cup (23). This additional electrode (44) is part of the beaded unit (29) of the electron gun (10), and this enables very accurate positioning of this additional electrode (44) with regard to its distance to the main focusing section (21) as well as its rotation. This makes it possible to use this additional electrode (44) to improve the quality of the main focusing section (21) by considering it as an integral part of the main focusing section (21). For this reason this additional electrode is referred to as Main lens Field Modifier (MFM) (44). It is shown that by varying the vertical dimension of the apertures (52), (53) of the MFM (44) or the spacing between MFM (44) and main focusing section (21), it is possible to increase the effective lens diameter for spherical aberration, while the effective lens diameter for magnification is kept constant. In other words, the spot performance of the electron gun (10) is improved, while the length of the electron gun (10) is kept unaltered. With a view to obtaining the accuracy needed for a main focusing section (21) with a good tolerance behavior, this new method of manufacturing an electron gun (10) is of great importance.
Abstract:
A gas discharge lamp having a translucent envelope enclosing a light emitting assembly that includes a baffle and an anode separated by one or more spacers made of an electrically insulating material such as ceramic, which are oriented towards a heated cathode to receive electrons emitted therefrom. Each spacer has a front surface, a rear surface, a top surface and a bottom surface including a transverse cavity formed between the front and rear surfaces to permit electrons to flow through. The cavity extends from a first through-hole in the front surface to a second through-hole in the rear surface of the spacer. Further, the cavity includes a gap for allowing conductive materials that may sputter or evaporate from the anode or the baffle to escape from the cavity to prevent short circuiting between the anode and the baffle.
Abstract:
A method for producing a discharge lamp of the present invention includes the steps of: preparing a glass pipe for a discharge lamp having a luminous bulb portion and a side tube portion, and a single electrode assembly including an electrode structure portion that will be formed into a pair of electrodes of the discharge lamp; inserting the single electrode assembly into the glass pipe for a discharge lamp such that the electrode structure portion of the single electrode assembly is positioned in the luminous bulb portion of the glass pipe for a discharge lamp; forming a luminous bulb in which the electrode structure portion is arranged inside by attaching the side tube portion of the glass pipe for a discharge lamp to a part of the single electrode assembly; and forming a pair of electrodes in the luminous bulb by melting and cutting a part of the electrode structure portion selectively.
Abstract:
Method for welding a mask in a flat cathode ray tube, including applying an initial tensile force to a shadow mask to prevent deformation, and fastening the shadow mask to a rail by welding, wherein fastening the shadow mask includes performing a primary spot welding having relatively long primary welding spot intervals between primary welding spots, and a secondary spot welding having secondary welding spot intervals between secondary welding spots shorter than the primary welding spot intervals.
Abstract:
A FED is provided comprising: an emitter located on a cathode; a pixel located on an anode positioned to receive electrons from the emitter; and a getter located on the anode. According to another aspect of the invention, a method of making an FED is provided comprising: depositing getter material over a tip on a cathode; assembling the cathode with an anode, wherein the getter is between the tip and the anode; and activating the getter, whereby the activation causes the getter to be deposited on the anode.