Abstract:
A means of creating images, or other whole wavefronts, from composing segments of this whole. The purpose is to allow many, less capable segment generators to be used in place of a single, more capable one. Applications can be found in the design of video projection systems, film projection systems, and photographic enlarging systems. The invention consists of a single focusing means (20), one or more reflective means (24), and a plurality of generators (90 and 92). Representative designs are shown with the following characteristics:"One-dimensional" tessellation using simple mirrors."Two-dimensional" tessellation using glass with mirrored sections.Extensibility to support an arbitrary number of composing segments.generating elements placed together on the same plane.Easy and inexpensive manufacture.Easy alignment.
Abstract:
An industrial x-ray inspection system has detecting means comprising a linear array of scintillator crystals operable to emit light in response to incident radiation, a bundle of optical fibers arranged so that an input end thereof is positioned at the detecting means for receiving light therefrom and an output end thereof is positioned at an image intensifier or camera wherein the optical fibers are regrouped so that the aspect ratios of the input and output ends of the bundle of optical fibers match those of the detecting means and the image intensifier or camera respectively. One optical fiber is associated with each scintillator crystal.
Abstract:
An optical device for displaying a large, two dimensional image is shown which utilizes a beam splitter having four faces upon which are mounted photosensor arrays. The photosensor arrays are mounted in a mosaic-like pattern upon each face with the pattern on one face differing from the pattern on the remaining three faces. Through this arranngement, standard photosensor arrays may be used to build a device that is capable of displaying a large image with no limitation on image side due to limitations on photosensor size.
Abstract:
A circuit for stitching and balancing the outputs of two CCD arrays is described. The field of view of a high resolution CCD raster input scanner can be doubled by using a CCD array for each half of the scan. Then the CCD output analog pulses must be stitched together, the dc level equalized and restored to a common value, and the gains adjusted to match the video levels from the two CCD devices. The circuit described herein accomplishes these functions at high data rates and at low cost by stitching the video, eliminating the hold step produced by the sample-and-hold circuit, and adjusting the gains, all at the low voltage levels at which the CCD output signals were originally produced, before amplifying the resultant stitched video to a higher voltage level and converting to digital form.
Abstract:
An image sensor, suitable for resolving a high-resolution image, comprises an arrayed plurality of image sensor modules of moderate individual resolution. The high-resolution image is subdivided into contiguous sub-images, each of which is minified before being projected upon an image sensor module. This avoids bars of blindness between the fields of view of the image sensor modules, and also facilitates production and repair of the image sensor.
Abstract:
A camera array, an imaging device and/or a method for capturing image that employ a plurality of imagers fabricated on a substrate is provided. Each imager includes a plurality of pixels. The plurality of imagers include a first imager having a first imaging characteristics and a second imager having a second imaging characteristics. The images generated by the plurality of imagers are processed to obtain an enhanced image compared to images captured by the imagers. Each imager may be associated with an optical element fabricated using a wafer level optics (WLO) technology.
Abstract:
Systems and methods for controlling the parameters of groups of focal planes as focal plane groups in an array camera are described. One embodiment includes a plurality of focal planes, and control circuitry configured to control the capture of image data by the pixels within the focal planes. In addition, the control circuitry includes: a plurality of parameter registers, where a given parameter register is associated with one of the focal planes and contains configuration data for the associated focal plane; and a focal plane group register that contains data identifying focal planes that belong to a focal plane group. Furthermore, the control circuitry is configured to control the imaging parameters of the focal planes in the focal plane groups by mapping instructions that address virtual register addresses to the addresses of the parameter registers associated with focal planes within specific focal plane groups.
Abstract:
A camera array, an imaging device and/or a method for capturing image that employ a plurality of imagers fabricated on a substrate is provided. Each imager includes a plurality of pixels. The plurality of imagers include a first imager having a first imaging characteristics and a second imager having a second imaging characteristics. The images generated by the plurality of imagers are processed to obtain an enhanced image compared to images captured by the imagers. Each imager may be associated with an optical element fabricated using a wafer level optics (WLO) technology.
Abstract:
A camera array, an imaging device and/or a method for capturing image that employ a plurality of imagers fabricated on a substrate is provided. Each imager includes a plurality of pixels. The plurality of imagers include a first imager having a first imaging characteristics and a second imager having a second imaging characteristics. The images generated by the plurality of imagers are processed to obtain an enhanced image compared to images captured by the imagers. Each imager may be associated with an optical element fabricated using a wafer level optics (WLO) technology.
Abstract:
A compact camera module includes an image sensor including photosensitive areas, and an array of lenses optically aligned with sub-groups of the photosensitive areas. The array of lenses includes a first array of lenses and one or more groups of lenses disposed around the periphery of the first array of lenses. Each lens in the first array has a respective central optical axis that is substantially perpendicular to a plane of the image sensor and each of which has field of view. Each of the lenses in the one or more groups disposed around the periphery of the first array of lenses has a field of view that is centered about an optical axis that is tilted with respect to the optical axes of the lenses in the central array.