Abstract:
An SRAM having two capacitors connected in series between respective bit storage nodes of each memory cell. The two inverters of the memory cell are powered by a positive voltage and a low voltage. The two capacitors are connected to each other at a common node. A leakage current generator is coupled to the common node. The leakage current generator supplies to the common node a leakage current to maintain a voltage which is approximately halfway between the voltages of the high and low SRAM supplies.
Abstract:
A variable capacitance device including: first and second transistors coupled in parallel between first and second nodes of the capacitive device, a control node of the first transistor being adapted to receive a control signal, and a control node of the second transistor being adapted to receive the inverse of the control signal, wherein the first and second transistors are formed in a same semiconductor well.
Abstract:
A method for forming an integrated circuit including the steps of: a) forming openings in a front surface of a first semiconductor wafer, the depth of the openings being smaller than 10 μm, and filling them with a conductive material; b) forming doped areas of components in active areas of the front surface, forming interconnection levels on the front surface and leveling the surface supporting the interconnection levels; c) covering with an insulating layer a front surface of a second semiconductor wafer, and leveling the surface coated with an insulator; d) applying the front surface of the second wafer coated with insulator on the front surface of the first wafer supporting interconnection levels, to obtain a bonding between the two wafers; e) forming vias from the rear surface of the second wafer, to reach the interconnection levels of the first wafer; and f) thinning the first wafer to reach the openings filled with conductive material.
Abstract:
A protection device includes a triac and triggering units. Each triggering unit is formed by a MOS transistor configured to operate at least temporarily in a hybrid operating mode and a field-effect diode. The field-effect diode has a controlled gate that is connected to the gate of the MOS transistor.
Abstract:
A device for controlling a voltage-controlled switch from a digital signal, comprising: a first means for providing the digital signal to the output terminal of the switch; a second means for biasing the switch control terminal to a level greater than the threshold voltage of the switch and smaller than the sum of said threshold voltage and of the maximum voltage of the digital signal; and a third means for adding or subtracting to said level said maximum voltage of the digital signal respectively at the rising and falling edges of the logic inverse of the digital signal.
Abstract:
An integrated superheterodyne dual-conversion tuner upconverts a signal so as to place it outside a reception band, and then downconverts the signal with a non-zero intermediate frequency. A first filter of the bulk acoustic wave type is positioned between the up and down conversion and is calibrated in such a way as to accurately determine its central frequency. A second filter of a microelectromechanical type receives the downconverted signal and is calibrated in such a way as to accurately determine its central frequency.
Abstract:
A dual-conversion tuner firstly upconverts so as to place itself outside the receive band and then downconverts with zero intermediate frequency. A filter of the surface acoustic wave type is disposed between the two frequency transposition stages of the tuner. After baseband filtering, the signals are digitized then processed in a digital block comprising a channel decoding module. With the exception of the surface acoustic wave filter, the components are entirely embodied in integrated fashion.
Abstract:
The present invention relates to a sense amplifier for reading a memory cell, comprising a read node linked directly or indirectly to the memory cell, a first active branch connected to the read node, comprising means for supplying a read current at the read node, and a data output linked to one node of the first active branch at which a voltage representative of the conductivity state of the memory cell appears. According to the present invention, the sense amplifier comprises a second active branch connected to the read node, comprising means for supplying, at the read node, a current that is added to the current supplied by the first active branch, such that the voltage representative of the conductivity state of the memory cell remains substantially stable upon a current draw at the read node. Application particularly to reading non-volatile FLASH and EEPROM type memory cells.
Abstract:
An integrated circuit includes a dual-conversion tuner, firstly upconverting so as to place a signal outside the reception band, then downconverting with zero intermediate frequency. A bulk acoustic wave type filter is calibrated in such a way as to accurately determine its central frequency. This filter is positioned between the two frequency transposition stages of the tuner. After baseband filtering, the signals are digitized then processed in a digital block BNM which includes a channel decoding module.
Abstract:
The present invention relates to an integrated circuit comprising a central processing unit clocked by a clock signal, a main oscillator circuit supplying a first clock signal and a peripheral circuit supplying a periodic wake up signal, the central processing unit comprising a first operating mode at full power, in which the first clock signal is applied to the central processing unit, and an active halt mode in which the main oscillator circuit and the central processing unit are deactivated, the central processing unit being awakened by the periodic wake-up signal. According to the present invention, the integrated circuit comprises a secondary oscillator circuit for supplying a second clock signal of lower frequency than the first clock signal and a circuit for managing clock signals arranged for, upon the wake-up of the central processing unit at the end of the active halt mode, waking up the secondary oscillator circuit and applying the second clock signal to the central processing unit so as to clock the central processing unit to the lower frequency of the second clock signal and thus obtain a second operating mode with reduced current consumption relative to the first operating mode.