Abstract:
The present invention aims to supply an electronic component which is manufactured in a manufacturing process at low cost, and realize improvement of shock resistance, endurance, flexure resistance, mounting reliability etc. at the same time, without requiring fine adjustment etc. The invention is an electronic component 1 which has an element 2, a pair of terminal portions 4 which were disposed on the element 2, and an external covering material 5 which covers the a part of the terminal portions 4 and the element 2, and configured in such a manner that inclined portions 10 are disposed on corner portions of a bottom surface 9 and side surfaces of the external covering material 5, and the terminal portions 4 are protruded from corner portions where the inclined portions 10 and the bottom surface 9 of the external covering material intersect.
Abstract:
An LED light module assembly for use with high power, high light output LED's includes a thin flexible circuit board with surface mounted LED's and other electronic components which is attached to a metal heat sink using a layer of a thermally conductive adhesive, such as a thermally conductive epoxy adhesive. A conduction path is provided from the LED carrier through the flexible circuit board by the incorporation of one or more thermally conductive vias in the region of the attachment pad used to bond the LED to the flexible circuit board. These vias provide a conduction path from the back side of the LED carrier through the circuit board to the thermally conductive adhesive and heat sink. The LED light module assembly has the capacity to dissipate between about 10-14 W of power without exceeding a maximum LED junction temperature of about 125° C.
Abstract:
Disclosed examples of printed circuit boards for lighting systems have identical LED landing zones printed on the board. Each zone includes at least two sets of LED contact pads. One pad set is configured to mate with contacts of an LED of a first structural type, e.g. from a first product line or manufacturer. The other pad set is configured to mate with contacts of an LED of a second type, e.g. from a different product line or manufacturer. The layout may enable an easy system re-design, e.g. to shift from one type of LED to another. Alternatively, the layout may enable one system to use LEDs of the two different types in a single LED set or array. Exemplary systems disclosed herein include an element for mixing light produced by LEDs mounted to the landing zones, such as an optical integrating cavity.
Abstract:
An electronic device includes an electronic component (40), a first printed circuit board (PCB) (100) and a second printed circuit board (200). The electronic component includes a first pin (A1) and a second pin (A2). The first PCB and a second PCB, respectively including first conductor trace lines (102) and second conductor trace lines (108) for electrically connecting the first pin and the second pin. The first PCB is disposed above the second PCB, and is parallel with the second PCB. The first PCB is electrically connected to the second PCB via at least one of the first conductor trace lines and the second conductor trace lines. A surface area of the first PCB is smaller than that of the second PCB.
Abstract:
A method and system for attaching LEDs to circuitry which would protect the LEDs from heat damage and allows for individual LEDs to be removed.
Abstract:
In a two-pole SMT miniature housing in leadframe technique for semiconductor components, a semiconductor chip is mounted on one leadframe part and is contacted to a further leadframe part. The further leadframe part is conducted out of the housing in which the chip is encapsulated as a solder terminal. No trimming or shaping process is required and the housing is tight and is capable of further miniaturization. The solder terminals as punched parts of the leadframe are conducted projecting laterally from the housing sidewalls residing opposite one another at least up to the housing floor which forms the components' mounting surface. The chip mounting surface and the components' mounting surface form a right angle with one another.
Abstract:
A method and system for attaching LEDs to circuitry which would protect the LEDs from heat damage and allows for individual LEDs to be replace when a LED fails, without a significant increase in manufacturing cost.
Abstract:
A surface mountable axial leaded component including a component body, a first component lead and a second component lead. The first component lead extends from a first end of the component body and a second component lead extends from a second end of the component body that is opposite the first end. A portion of the first and second component leads is formed in a loop and a diameter of the loop is at least equal to the diameter of the component body. The loop may be formed as a circular loop, an elliptical loop, a polygon loop, a square loop or rectangular loop, among other loop configurations. When formed as a circular loop, the loop may include a flat segment.
Abstract:
A printed circuit board and an electronic apparatus utilizing the same. The electronic apparatus includes the printed circuit board and a dual-inline-package (DIP) device. The printed circuit board includes a pair of holes. The pair of holes has a geometrical center, and is substantially symmetrical with respect to the geometric center so that each hole is arc-shaped. The DIP device includes a pair of pins, and is disposed on the printed circuit board by inserting the pins into the holes.
Abstract:
Disclosed is a printed circuit board which is guaranteed to be free of defective soldering in mounting and connecting electric or electronic parts or devices to the printed circuit. The circuit board has a circuit pattern printed on its substrate, and an anti-soldering layer is laid on the circuit pattern to prevent soldering material from sticking to the circuit pattern and silk-screen printing areas are laid on the anti-soldering layer to indicate where selected electric or electronic parts or devices are to be mounted. Each silk-screen printing area has terminal holes made therein. The board has a substrate-exposed zone traversing the silk-screen printing area to leave its opposite extensions open to the surrounding atmosphere, thereby allowing heated air and gases to escape from the interspace between the bottom of the electric or electronic part or device and the exposed substrate.