Abstract:
A “windowless” H-bridge buck-boost switching converter includes a regulation circuit with an error amplifier which produces a ‘comp’ signal, a comparison circuit which compares ‘comp’ with a ‘ramp’ signal, and logic circuitry which receives the comparison circuit output and a mode control signal indicating whether the converter is to operate in buck mode or boost mode and operates the primary or secondary switching elements to produce the desired output voltage in buck or boost mode, respectively. A ‘ramp’ signal generation circuit operates to shift the ‘ramp’ signal up by a voltage Vslp(p−p)+Vhys when transitioning from buck to boost mode, and to shift ‘ramp’ back down by Vslp(p−p)+Vhys when transitioning from boost to buck mode, thereby enabling the converter to operate in buck mode or boost mode only, with no need for an intermediate buck-boost region.
Abstract:
A digital input to a digital-to-analog converter (DAC) is divided into a most significant portion and a lesser significant portion. At least one tap voltage generator generates a plurality of voltages, preferably using a resistor string. A decoder decodes at least one sub-word that forms the lesser significant portion to generate a corresponding at least one control signal. A switching unit accesses voltages generated by the at least one tap voltage generator in response to the at least one control signal. A scaled current generator generates a respective weighted current from each accessed voltage. An output stage combines all the weighted currents with a voltage that is an analog representation of the most significant portion of the digital input to generate an analog approximation of the entire digital input.
Abstract:
In an example embodiment, an analog to digital converter (ADC) facilitating passive analog sample and hold is provided and includes a pair of binary weighted conversion capacitor arrays, a pair of sampling capacitors, and a plurality of switches that configure each conversion capacitor array and the sampling capacitors for a sampling phase, a charge transfer phase, and a bit trial phase. During the sampling phase, the sampling capacitors are decoupled from the conversion capacitors and coupled to an analog input voltage. During the charge transfer phase, the sampling capacitors are coupled to the conversion capacitors and decoupled from the analog input voltage. During the bit trial phase, the sampling capacitors are decoupled from the conversion capacitors.
Abstract:
In an example embodiment, an amplifier having high gain and high slew rate is provided and includes a pair of input transistors to which input voltage is applied, a pair of diode-connected loads coupled to the input transistors, at least one pair of current sources coupled to the diode-connected loads, and a bias control configured to turn off the at least one pair of current sources to enable high slew rate for the amplifier and to turn on the at least one pair of current sources to enable high gain for the amplifier. In specific embodiments, the current sources include transistors, the bias control controls a bias voltage to the current sources, and the bias voltage is driven to the supply voltage (VDD) to turn off the current sources.
Abstract:
Delta-sigma modulators do not handle overload well, and often become unstable if the input goes beyond the full-scale range of the modulator. To provide overload protection, an improved technique embeds an overload detector in the delta sigma modulator. When an overload condition is detected, coefficient(s) of the delta sigma modulator is adjusted to accommodate for the overloaded input. The improved technique advantageously allows the delta sigma modulator to handle overload gracefully without reset, and offers greater dynamic range at reduced resolution. Furthermore, the coefficient(s) of the delta sigma modulator can be adjusted in such a way to ensure the noise transfer function is not affected.
Abstract:
Example embodiments of this disclosure can provide an apparatus, a system, and a method of correcting for charge lost from a sampling capacitor as a result of an analog to digital conversion being performed. In an embodiment, there is provided a method of operating an analog to digital converter comprising at least a first sampling capacitor used to sample an input signal, where the method can further comprise a correction step of modifying the voltage across the at least first sampling capacitor, the correction step being performed prior to commencing an acquire phase.
Abstract:
This application discusses, among other things apparatus and methods for a voltage boost circuit. In an example, a voltage boost circuit can include first and second inverters, sharing a first supply node, and sharing a second supply node, a first charge transfer capacitor, configured to couple a first clock signal to the first inverter output, a second charge transfer capacitor, configured to couple a second clock signal to the second inverter output, the second clock signal being out-of-phase with the first clock signal, a first gate drive capacitor, configured to couple the first clock signal to the second inverter input, and a second gate drive capacitor, configured to couple the second clock signal to the first inverter input.
Abstract:
This disclosure relates to temperature stabilization of at least a portion of an amplifier, such as a logarithmic amplifier, and/or a band gap reference circuit. In one aspect, one or more stages of an amplifier, a heater, and a temperature sensor are included in a semiconductor material and surrounded by thermally insulating sidewalls.
Abstract:
A switching regulator or other apparatus or techniques can include load current monitoring to provide a digital representation of an estimated load current. Load current monitoring can be performed by a circuit including a counter circuit, a comparator circuit, and a digitally-controlled source coupled to the counter circuit and configured to adjust a bias condition of a sensing device in response to a count provided by the counter circuit in order to establish a proportional relationship between a current conducted by the sensing device and a corresponding current conducted by a power switching device. The counter circuit is configured to increment and decrement the count in response to information provided by the comparator output and the count is generally indicative of the estimated load current, such as an average load current.
Abstract:
A delta-sigma modulator is configured to sense and convert an electromagnetic field into a digital signal. An exemplary delta-sigma modulator includes a sensor component, such as an LC resonator, that is configured to sense the electromagnetic field and generate an input analog signal, where the delta-sigma modulator is configured to convert the input analog signal to the digital signal. Delta-sigma modulator can include an analog-to-digital converter coupled to the sensor component that receives and converts the input analog signal to the digital signal. Delta-sigma modulator can further include a digital-to-analog converter (DAC) coupled to the resonator and the ADC, the DAC configured to receive the digital signal from the ADC and generate a feedback analog signal.