Abstract:
The glass electrode comprises a membrane of ion sensitive glass. The membrane comprises a composite material consisting of a matrix of ion sensitive glass and a dispersed filling material therein having higher tensile strength than the matrix. The membrane of the glass electrode is particularly resistant to mechanical stress and the glass electrode is i.a. applicable in a tc Pco.sub.2 electrode of the Severinghaus-type.
Abstract:
An ion-sensitive measuring electrode device with an ion-sensitive element based on ion-conducting crystalline ceramic material is provided. The electrode device shows a selectivity to the Na.sup.+ ion versus the H.sup.+ ion corresponding to the selectivity of the known sodium-sensitive glass-based solid membrane electrodes.Ion-sensitive measuring electrode devices showing good selectivity properties are provided on the basis of ion-conducting crystalline material, the crystal structure of which comprises a three-dimensionally extending interstitial space containing positions for the ion, especially material in which the interstitial space has bottlenecks which just permits passage of the ion.A method for preparing polycrystalline ceramic material based on oxides of zirconium, phosphor and silicon is also provided.
Abstract:
An electrode device for transcutaneously measuring the blood gas parameter and for sensing a bioelectrical signal and an electrode assembly comprising such an electrode device are disclosed. The electrode assembly for transcutaneously measuring a blood gas parameter and for measuring a bioelectrical signal comprises two separate electrode devices one of which further comprises an electrochemical measuring electrode system. The electrochemical measuring electrode system comprises a reference electrode of a potentiometric electrode system and an anode of a polarographic electrode system constituted by a single metallic body, a pH-electrode of the potentiometric electrode system, and a noble metal cathode of the polarographic electrode system. By means of the electrode assembly, coincident measurement of the blood gas partial pressures of oxygen and carbon dioxide and of a bioelectrical signal such as the ECG (Electrocardiography), the RR (Respiration rate) or the heart rate of the test person or patient is obtainable.
Abstract:
The invention relates to a method and apparatus for measuring one or more data of blood samples, such as oxygen saturation, contents of hemoglobin, bicarbonate, sodium, potassium, etc. involving hemolyzation of the blood sample. The blood sample is passed into a conduit and hemolyzed therein by imparting ultra-sonic waves to all parts defining said conduits. Measurement is performed after and possibly also prior to hemolyzation. In its preferred embodiment the apparatus according to the invention comprises a computer for automatically controlling the operational sequence of the components of the apparatus and for receiving measuring signals from measuring devices of the apparatus and converting said signals into immediately understandable digital data.
Abstract:
When performing the method a sensor (1) is used with a coil (15) integrated in a coil circuit. In the coil circuit a magnetic field is generated so that mutual induction can develop between the coil circuit and the surroundings of the sensor (1). The magnetic field in the coil circuit is detected intermittently, and a developed mutual induction is detected as a change of the magnetic field. The position of the sensor is monitored on the basis of said intermittent detection of the magnetic field in the coil circuit. The change of the magnetic field in the coil circuit can be detected in several ways. If the magnetic field is varying, the change may for example be detected as a change of the peak value of the voltage across or the current intensity through the coil circuit or be detected as a phase shift of one of these parameters. The method is used especially to ensure that calibration of the sensor (1) is performed only when the sensor (1) is located in a related calibration chamber (24). The detectable mutual induction is developed between the coil circuit with the coil (15) and an aluminum cup (22) constituting the calibration chamber (24).
Abstract:
The sensor (1) comprises a sensor body (3) thermostatable by means of a first thermostating system (14,15) and having an outer surface (3a,40a) for application to the human body (28) in heat conductive relationship therewith, said outer surface (3a,40a) forming the measuring surface of the sensor (1). The sensor (1) further comprises analyte sensing means (7,8) arranged in said sensor body (3) and being thermostated through said body (3) by means of the first thermostating system (14,15). The sensor (1) further comprises means (16,41) arranged in the sensor body (3) in heat insulated relationship therewith while in heat conductive relationship with a delimited surface part of the sensor measuring surface (3a,40a). The means (16,41) is thermostatable by means of a second thermostating system. The delimited surface part is located within the outer periphery of the sensor measuring surface (3a,40a).
Abstract:
New apparatus for measuring parameters such as pH, pCO.sub.2, pO.sub.2, and Hb content of physiological fluids, especially blood, is described. The apparatus comprises novel means for suspending reagent vessels (34, 35, 40, 45, 50) having shoulders (51, 52) and containing calibrating solutions, rinsing solutions etc., as well as for suspending a liquid waste vessel (26) by suspending the vessels between rods (53, 54) fed to the analyser. The reagent vessels are provided with caps (55, 58) at the top and include liquid reagent conduit extending from the outlet aperture of the cap down into the liquid. When the vessel is mounted on the analyser a fixed inlet tube extending horizontally outwardly from the analyser penetrates a seal across the outlet aperture and connects with the liquid reagent conduit.
Abstract:
A method of photometric in vitro determination of the content of an analyte in a sample is disclosed. The sample is located in a measuring chamber which has a radiation path length and has at least one at least partially transparent wall part. The measuring chamber is in optical communication with an optical system adapted for the analyte which includes a radiation source and a radiation detector. The measuring chamber is adjustable in shape which enables the radiation path length across the measuring chamber to be changed. In a first measuring step an unknown first radiation path length across the measuring chamber is set and radiation at at least two wavelengths is transmitted from the radiation source through the measuring chamber and to the radiation detector. In a second step, the measuring chamber is adjusted in shape thereby setting a second unknown path length across the measuring chamber. Radiation at the same wavelengths as during the first step is again transmitted from the radiation source through the measuring chamber and to the radiation detector. The analyte content is then determined on the basis of radiation detected in each of the measuring steps.
Abstract:
A method and apparatus for measuring a characteristic which is a function of the concentration of one or more chemical species in a sample fluid, examples being the concentration of sodium ion or potassium ion in blood, makes use of a discardable or disposable measuring device comprising one or more sensors, an example of a relevant type of sensor being a potentiometric electrode, one or more conditioning (e.g. calibration) fluid chambers and, optionally, a sample fluid chamber, the sensor(s) being movable relative to the chamber(s), or vice versa, so as permit conditioning of the sensor(s) in a conditioning fluid chamber and exposure of a sensing surface part of the sensor(s) to a sample fluid.