Abstract:
An apparatus that can supply oxyhydrogen gas includes an electrolysis device, a filter device, and a control device. The electrolysis device includes a voltage controller that applies voltages to positive and negative electrode plates to convert water electrolytically in an electrolysis chamber to form oxyhydrogen gas, which is outputted via a first output conduit. An output end of the first output conduit is extended below water level in a container of the filter device. A second output conduit permits the oxyhydrogen gas that flows through the first output conduit and through the water in the container to flow therethrough. The control device includes a ratio adjusting interface for controlling a difference in the voltages provided by the voltage controller so as to adjust a ratio of hydrogen to oxygen in the oxyhydrogen gas formed in the electrolysis chamber.
Abstract:
A switching method for an electronic device having sensing regions is mentioned. The switching method is configured to detect signals received by the electronic device, so as to switch the states of the electronic device. The switching method comprises receiving a first signal at a first moment and receiving a second signal at a second moment, wherein the first signal is generated by touching a first sensing region and the second signal is generated by touching a second sensing region; measuring a triggering duration and determining whether the triggering duration is consistent with a predetermined duration, when the first signal and the second signal are inputted simultaneously; switching the electronic device from a first state to a second state, if the triggering duration is consistent with the predetermined duration; and maintaining the electronic device in the first state, if the triggering duration is not consistent with the predetermined duration.
Abstract:
Helicobacter pylori is closely associated with chronic gastritis, peptic ulcer disease, and gastric adenocarcinoma. Helicobacter pylori neutrophil-activating protein (HP-NAP), a virulence factor of Helicobacter pylori, plays an important role in pathogenesis of Helicobacter pylori infection. Since HP-NAP has been proposed as a candidate vaccine against Helicobacter pylori infection, an efficient way to obtain pure HP-NAP needs to be developed. In the present invention, recombinant HP-NAP expressed in Bacillus subtilis and Escherichia coli was purified through a single step of DEAE Sephadex ion-exchange chromatography with high purity. Also, purified recombinant HP-NAP was able to stimulate neutrophils to produce reactive oxygen species. Thus, recombinant HP-NAP obtained from our Bacillus subtilis expression system and Escherichia coli expression system is functionally active. Furthermore, this one-step negative purification method should provide an efficient way to purify recombinant HP-NAP expressed in Bacillus subtilis and Escherichia coli for basic studies, vaccine development, or drug design.
Abstract:
A level shifter includes one PMOS and two NMOS transistors. A source of the first NMOS transistor is coupled to a low power supply voltage. An input signal is coupled to a gate of the first NMOS transistor and a source of the second NMOS transistor. The input signal has a voltage level up to a first power supply voltage. A source of the PMOS transistor is coupled to a second power supply voltage, higher than the first power supply voltage. An output signal is coupled between the PMOS and the first NMOS transistors. The first NMOS transistor is arranged to pull down the output signal when the input signal is a logical 1, and the second NMOS transistor is arranged to enable the PMOS transistor to pull up the output signal to a logical 1 at the second power supply voltage when the input signal is a logical 0.
Abstract:
A method of fabricating a semiconductor device includes the following steps. A semiconductor substrate having a first side and a second side facing to the first side is provided. At least an opening is disposed in the semiconductor substrate of a protection region defined in the first side. A first material layer is formed on the first side and the second side, and the first material layer partially fills the opening. Subsequently, a part of the first material layer on the first side and outside the protection region is removed. A second material layer is formed on the first side and the second side, and the second material layer fills the opening. Then, a part of the second material layer on the first side and outside the protection region is removed. Finally, the remaining first material layer and the remaining second material layer on the first side are planarized.
Abstract:
A chip stacking structure includes a first chip and a second chip. The first chip includes a surface having a first group of pads formed thereon, and the second chip includes a surface having a second group of pads formed thereon. The second group of pads is bonded onto the first group of pads to define a plurality of capillary passages extending in a same direction. The chip stacking structure further includes an underfill filling up interspaces between the first chip and the second chip. The chip stacking structure is capable of avoiding chip deformation and cracking during a bonding process.
Abstract:
A level shifter includes an input node, an output node, a pull-up transistor, a pull-down transistor, and at least one diode-connected device coupled between the pull-up transistor and the pull-down transistor. The level shifter is arranged to be coupled to a high power supply voltage, to receive an input signal having a first voltage level at the input node, and to supply an output signal having a second voltage level at the output node. The high power supply voltage is higher than the first voltage level. The at least one diode-connected device allows the output signal to be pulled up to about a first diode voltage drop below the high power supply voltage and/or to be pulled down to about a second diode voltage drop above ground. The first diode voltage drop and the second diode voltage drop are from the at least one diode-connected device.
Abstract:
A method and system for identifying a NAND-Flash without reading a device ID. The method includes: executing an identification flow for setting a first page of a block as a target block, utilizing a combinations table to query a target block, evaluating a result by comparing a identifying information in the target block with the combinations table, trying all combinations in the combinations table until correctly identifying the NAND-Flash by having a positive match result or returning an error if none of the combinations match.
Abstract:
A semiconductor package is provided. The semiconductor package includes an organic substrate, a stiffness layer, and a chip subassembly. The stiffness layer is formed on the organic substrate. The chip subassembly is disposed on the stiffness layer. The chip subassembly includes at least a first chip, a second chip, and a third chip. The second chip is disposed between the first chip and the third chip in a stacked orientation. The first chip, the second chip, and the third chip have the function of proximity communication.
Abstract:
A method for fabricating a trench capacitor is disclosed. A substrate having a first pad layer is provided. STI structure is embedded into the first pad layer and the substrate. A second pad layer is deposited over the first pad layer and the STI structure. Two adjacent trenches are etched into the first, second pad layers, and the semiconductor substrate. The second pad layer and a portion of the STI structure between the two trenches are etched to form a ridge. A liner is formed on interior surface of the trenches. A first polysilicon layer is formed on the liner. A capacitor dielectric layer is formed on the first polysilicon layer. The two adjacent trenches are filled with a second polysilicon layer. The second polysilicon layer is then etched until the capacitor dielectric layer is exposed. The fabrication process is easy to integrate to SoC chip.