Abstract:
Methods and devices are provided to allow for easy customization of a surgical access device by an end user. In one exemplary embodiment a surgical access device is provided that includes a plurality of elongate seal elements that are configured to form a sealed configuration between a surgical site and an outside environment. The seal elements can be disposed in a surgical opening and can mate directly to each other with the outermost seal elements mating directly to tissue of the opening. The seal elements can include one or more mating elements to provide the desired mating. The seal elements can also include sealable openings that are configured to receive surgical instruments for use at the surgical site. The sealable openings maintain the desired seal throughout the course of a surgical procedure. Exemplary methods for providing custom configurations on location are also provided.
Abstract:
A surgical tool system. Various embodiments of the surgical tool system may comprise surgical instrument that has a handle assembly that operably supports a drive system therein for generating drive motions upon actuation of a movable handle portion operably coupled to the handle assembly. An elongated body protrudes from the handle assembly and operably supports a control rod therein that interfaces with the drive system. The surgical tool system further includes at least two surgical tools selected from the group of surgical tools consisting of: manipulators, nippers, scissors, endocutters, tissue thickness measurement devices, staple appliers, clip appliers, syringes for applying glue, sealant, drugs or medicaments and cauterization devices wherein each of the surgical tool within the group of surgical tools at least has a housing that is removably couplable to the elongated body and a drive assembly that is removably couplable to the control rod for receiving the drive motions therefrom.
Abstract:
A surgical stapling apparatus for use with a disposable loading unit. Various embodiments include an elongated body assembly that comprises a distal body segment and a proximal body segment that are operably coupled together by an intermediate articulation joint such that the proximal body segment and the distal body segment define a longitudinal axis. The intermediate articulation joint may be configured to facilitate articulation of the distal body segment about an intermediate articulation axis that is substantially transverse to the longitudinal axis. The elongated body assembly may be configured to transfer actuation motions from an actuation shaft housed in a handle assembly to the disposable loading unit. In various embodiments, the intermediate articulation joint may be adjacent to the handle assembly.
Abstract:
A tissue thickness compensator may generally comprise a first layer comprising a first biocompatible material sealingly enclosed in a water impermeable material and a second layer comprising a second biocompatible material comprising at least one encapsulation, wherein the first biocompatible material expands when contacted with a fluid. The tissue thickness compensator may comprise a haemostatic agent, an anti-inflammatory agent, an antibiotic agent, anti-microbial agent, an anti-adhesion agent, an anti-coagulant agent, a medicament, and/or pharmaceutically active agent. The encapsulation may comprise a biodegradable material to degrade in vivo and/or in situ. The tissue thickness compensator may comprise a hydrogel. The reaction product may comprise a fluid-swellable composition. Articles of manufacture comprising the tissue thickness compensator and methods of making and using the tissue thickness compensator are also described.
Abstract:
A tissue thickness compensator may generally comprise a biocompatible material, a first component, and a second component, wherein the first component and second component form a reaction product to expand the tissue thickness compensator. The first component may comprise a first hydrogel precursor, the second component may comprise a second hydrogel precursor, and the reaction product may comprise a hydrogel. The reaction product may be formed in vivo and/or in situ by contacting the first component and the second component. The first component and/or second component may be encapsulated and configured to release the components when ruptured. The reaction product may comprise a fluid-swellable composition. Articles of manufacture comprising the tissue thickness compensator and methods of making and using the tissue thickness compensator are also described.
Abstract:
A fastener cartridge assembly for an end effector of a surgical instrument can comprise a cartridge body, a deformable tube, and a fastener moveable between an initial position and a fired position. The deformable tube can be longitudinally positioned along a length of the cartridge body. When the fastener is moved to the fired position, the fastener can compress a portion of the deformable tube. The deformable tube can comprise a resilient material such that deformation of the deformable tube generates a restoring force. The deformable tube can comprise a lattice of strands woven together to form a tube wall. Further, the deformable tube can be bioabsorbable and can hold a therapeutic agent. The fastener cartridge assembly can comprise multiple, substantially parallel deformable tubes positioned side-by-side and/or within each other.
Abstract:
A surgical fastening instrument can comprise a handle and an end effector, wherein the end effector can comprise a first jaw comprising a first cartridge attachment portion and a second jaw comprising a second cartridge attachment portion, and wherein one of the first jaw and the second jaw is movable relative to the other of the first jaw and the second jaw. The surgical fastening instrument can further comprise a first cartridge that is insertable into the first jaw and attachable to the first cartridge attachment portion and, in addition, a second cartridge that is insertable into the second jaw and attachable to the second cartridge attachment portion. In various embodiments, the first cartridge can comprise first fastener portions which are engageable with second fastener portions in the second cartridge.
Abstract:
Various methods and devices are provided for allowing multiple surgical instruments to be inserted into sealing elements of a single surgical access device. The sealing elements can be movable along predefined pathways within the device to allow surgical instruments inserted through the sealing elements to be moved laterally, rotationally, angularly, and vertically relative to a central longitudinal axis of the device for ease of manipulation within a patient's body while maintaining insufflation.
Abstract:
A surgical end effector can comprise a first jaw member and a second jaw member. The first jaw member may define an exterior surface on a distal portion thereof. The second jaw member may define an exterior surface on a distal portion thereof. The first jaw member may be moveable relative to the second jaw member between a first position and a second position. At least one of the exterior surfaces of the first and second jaw members may include a tissue gripping portion.
Abstract:
In various embodiments, a tissue thickness compensator can comprise a plurality of fibers. In at least one embodiment, such fibers can include a plurality of first fibers comprised of a first material and a plurality of second fibers comprised of a second material. A tissue thickness compensator can comprise a plurality of layers wherein each layer can be comprised of one or more medicaments. Certain embodiments are disclosed herein for manufacturing a tissue thickness compensator comprising fibers, for example.