Abstract:
There is provided a method of manufacturing a non-shrinkage ceramic substrate, and a non-shrinkage ceramic substrate using the same. A method of manufacturing a non-shrinkage ceramic substrate by firing a ceramic laminate including an internal electrode circuit pattern according to an aspect of the invention may include: laminating at least one constraining ceramic sheet on each of the upper and lower surfaces of the ceramic laminate to form constraining layers; performing a primary firing process on the ceramic laminate having the constraining layers thereon; polishing the surface of the ceramic laminate from which the constraining layers are removed; forming ceramic paste on the polished surface of the ceramic laminate while exposing connection terminals of the internal electrode circuit pattern to the outside environment through openings in the ceramic paste; forming a surface electrode on the surface of the ceramic paste by patterning so that the surface electrode is electrically connected to the connection terminals; and performing a secondary firing process so that the surface electrode adheres to the ceramic paste.
Abstract:
Provided are a constraining green sheet and a method of manufacturing a multi-layer ceramic substrate using the same. The constraining green sheet includes a first constraining layer and a second constraining layer. The first constraining layer has a side to be disposed on a multi-layer ceramic laminated structure and is formed of a first inorganic powder having a first particle diameter. The second constraining layer is disposed on the top of the first constraining layer and is formed of a second inorganic powder having a second particle diameter larger than the first particle diameter. Thus, a shrinkage suppression rate can be increased and a de-binder passage can be secured in a firing process of the ceramic laminated structure by using the constraining green sheet formed of inorganic powders that are different in terms of density and particle diameter.
Abstract:
A process for fabricating a field emitter electrode includes: impregnating a cathode and anode in an electrolyte containing carbon nanotubes dispersed therein and applying a predetermined voltage to the cathode and anode so as to deposit carbon nanotubes on a substrate provided on the anode; recovering the substrate and applying a conductive polymer onto the surface of the substrate having carbon nanotubes deposited thereon; and heat treating the conductive polymer having carbon nanotubes deposited thereon, so as to completely cure it.
Abstract:
A light emitting diode package with reduced light loss includes a package substrate, a light emitting diode chip mounted on the package substrate and an encapsulant formed on the package substrate to encapsulate the light emitting diode chip. The encapsulant has a refractive index gradient with refractive indices continuously increasing from a peripheral surface thereof to a central axis thereof.
Abstract:
There is provided a Low Temperature Co-fired Ceramic (LTCC) composition, an LTCC substrate comprising the same, and a method of manufacturing the same. The LTCC composition includes 20 to 70 parts by weight of ceramic powder; and 30 to 80 parts by weight of glass component for low-temperature sintering, wherein the ceramic powder has plate-shaped ceramic powder particles and globular ceramic powder particles, and the ceramic powder has a content ratio of the globular ceramic powder particles with respect to the plate-shaped ceramic powder particles in a range of 0 to 1.
Abstract:
Provided is a laminated ceramic package. The laminated ceramic package includes a laminated ceramic substrate having a conductive pattern therein, a first ceramic layer on the laminated ceramic substrate, and a second ceramic layer on the first ceramic layer. The first ceramic layer has a firing area shrinkage rate of about 1% or less. The second ceramic layer has a cavity receiving electronic components and a different firing shrinkage rate from the first ceramic layer.
Abstract:
There is provided a Low Temperature Co-fired Ceramic (LTCC) composition, an LTCC substrate comprising the same, and a method of manufacturing the same. The LTCC composition includes 20 to 70 parts by weight of ceramic powder; and 30 to 80 parts by weight of glass component for low-temperature sintering, wherein the ceramic powder has plate-shaped ceramic powder particles and globular ceramic powder particles, and the ceramic powder has a content ratio of the globular ceramic powder particles with respect to the plate-shaped ceramic powder particles in a range of 0 to 1.
Abstract:
There is provided a patch antenna. The patch antenna includes a high dielectric constant substrate having a cavity, a radiator disposed on a portion of one surface of the high dielectric constant substrate corresponding to the cavity, a feeder line disposed on the high dielectric constant substrate and supplying a signal to the radiator, and a ground part disposed on the high dielectric constant substrate.
Abstract:
The invention relates to a method of forming a phosphor film and a method of manufacturing an LED package incorporating the same. The method of forming a phosphor film includes mixing phosphor and light-transmitting beads in an aqueous solvent such that the nano-sized light-transmitting beads having a first charge are adsorbed onto surfaces of phosphor particles having a second charge. The method also includes coating a phosphor mixture obtained from the mixing step on an area where the phosphor film is to be formed, and drying the coated phosphor mixture to form the phosphor film. The invention further provides a method of manufacturing an LED package incorporating the method of forming the phosphor film.
Abstract:
There is provided a constraining green including a first constraining layer having a surface disposed on the one of the top and bottom surfaces of the ceramic laminated body, the first constraining layer containing a first inorganic powder; and a second constraining layer disposed on a top of the first constraining layer and containing a second inorganic powder and a fly ash. The constraining green sheet serves to ensure less shrinkage of the ceramic laminated body and improve debinding characteristics.