Abstract:
The present invention relates to para-aramid pulp including meta-aramid fibrids for use as reinforcement material in products including for example friction materials, fluid sealing materials, and papers. The invention further relates to processes for making such pulp.
Abstract:
This invention relates to an improved high performance honeycomb, methods for making the same, and articles including aerodynamic structures comprising the honeycomb, the honeycomb made with a paper that allows rapid impregnation of the honeycomb by structural resins while retarding excessive impregnation of node-line adhesives during manufacture. The honeycomb comprises a paper having a thickness of from 25 to 75 microns and a Gurley porosity of 2 seconds or greater and comprising high modulus fiber and thermoplastic binder having a melt point of from 180° C. to 300° C., wherein at least 30 percent by weight of the total amount of thermoplastic material is in the form of discrete film-like particles in the paper, the particles having a film thickness of about 0.1 to 5 micrometers and a minimum dimension perpendicular to that thickness of at least 30 micrometers.
Abstract:
This invention relates to a process for preparing a sheet structure comprising the steps of: a) combining a plurality of plies comprising thermostable floc and at least 10 weight percent aramid fibrids, and the plies further having a void content between 25 and 95 volume percent and a moisture content of 1.5 to 7 weight percent; b) providing the combined plurality of plies to a heated press for thermal laminating the plies together, the heated press having a temperature of from 250 to 400 degrees C.; c) thermal laminating the plurality of plies in the heated press by compressing the plies at a pressure of at least 1.3 MPa while heating the plies at a temperature of from 250 to 400 degrees C. to form a sheet structure; and d) maintaining a constant pressure of at least 1.3 MPa on the sheet structure while cooling the structure to a temperature below 100 degrees C.
Abstract:
The invention concerns a process for making a fibrillated polypyridobisimidazole floc comprising the steps of: cutting polypyridobisimidazole filaments to an average cut length of from about 0.5 to 10 mm; and applying energy to the polypyridobisimidazole filaments to produce a fibrillated floc having essentially the same average cut length after the application of energy as before the application of energy; where the fibrillated floc having a Canadian Standard Freeness (CSF), when dispersed in water by itself, of from about 400 to 750 ml.
Abstract:
A sheet comprising thermoplastic polymer (TP) and short high tensile modulus fibers, in which the concentration of TP in the middle of the sheet is higher than at the surface of the sheet, useful for making prepregs with a thermoset resin.
Abstract:
This invention relates to a honeycomb comprising cells having edges forming a face of the honeycomb, the face defined by a plurality of points and having an area of curvature wherein at least two of the points are located in different tangential planes, the walls of the cells comprising 5 to 50 parts by weight thermoplastic material having a melting point of from 120° C. to 350° C., and 50 to 95 parts by weight of a high modulus fiber having a modulus of 600 grams per denier (550 grams per dtex) or greater, based on the total amount of thermoplastic material and high modulus fiber in the walls; wherein less than 25 percent of the honeycomb cells in the area of curvature have a re-entrant angle of greater than 180 degrees. This invention also relates to articles including panels and/or aerodynamic structures comprising the honeycomb.
Abstract:
The present invention relates to a saturable nonwoven material comprising fluoropolymer floc and aramid floc, which can be used as a substrate for a liner for self-lubricating bearings and for other applications.
Abstract:
A method of making a composite sandwich panel comprises the steps of (i) making a core structure, (ii) making at least one facesheet, (iii) bonding at least one of the at least one facesheets to the core structure, wherein the growth of a carbon nanotube structure is achieved during at least one of steps (i) to (iii).
Abstract:
This invention relates to a pressboard comprising a plurality of plies having thermostable floc and at least 40 weight percent aramid fibrids, the pressboard having a final average thickness of 0.9 mm or greater, the pressboard further having an a void content of 25 volume percent or less and a ply adhesion (Y) in megapascals defined by the equation Y>2.97(X)(−0.25) wherein (X) is the thickness of the pressboard in millimeters; the pressboard can have a compressibility of 1.6 percent or less and compression set of 0.18 percent or less.
Abstract:
Porous fibrous sheets are provided that are useful in end uses requiring microbial barrier properties such as medical packaging and medical gowns and drapes. The porous fibrous sheets may contain nanofibers and wood pulp.