Abstract:
The present invention provides a liquid catalyzing system for aging a liquid, such as alcoholic liquid, vinegar and soy sauce. In the present invention, a plurality of nano metal flakes are adopted as the catalyst and a liquid catalyzing system is particularly designed in the present invention for rapidly aging the liquid. By using the liquid catalyzing system, the liquid can be evenly mixed with the nano metal flakes in a reaction space constructed by a framework and a filter; in addition, a disturb gas is inputted to the reaction space through a gas circulation loop connecting with the framework for treating a liquid flow disturbance to the liquid and the nano metal flakes, so as to accelerate a catalytic reaction resulted from the nano metal flakes to the liquid.
Abstract:
An apparatus, system and method for detecting, identifying, classifying and/or quantifying chemical species in a gas flow using a micro-fabricated ion filter coupled to a system adapted to apply drive signals to the ion filter. Coupled to the ion filter is a system adapted to measure the output of the ion filter, which in turn is coupled to a system adapted to extract numerical parameters from the measured output of the ion filter to facilitate chemical detection, identification, classification and/or quantification of the gas flow.
Abstract:
The present invention provides an alcoholic drink composition having functionality to shorten drunkenness time, wherein the alcoholic drink composition is fabricated by mixing a plurality of gold flakes into an alcoholic drink with a specific mix ration. Taking sorghum liquor as an exemplary alcoholic drink composition, wherein the gold flakes are mixed into the sorghum liquor by the mix ratio ranged between 6.6 mg/600 cc and 66 mg/600 cc. Therefore, when a user drinks the sorghum liquor mixed with the gold flakes, the user would sober up after a longest drunkenness time of 59 minutes passed, without additionally taking any other anti-alcoholic products.
Abstract:
The present invention provides a stirring device and gear train, the stirring device comprises at least one gear; at least one stirring tube; and at least one connecting portion connecting the gear and the stirring tube. Wherein the gear, the connecting portion, and the stirring portion are hollow, and the gear rotates the stirring tube via the connecting portion. Stirring is performed by utilizing the gear and the stirring tube in the stirring device of the present invention. Not only does the biggest flux be achieved per area, but the problem about cross contamination can also be reduced. In addition, in the gear train, the collimation of the stirring device can be increased by a specific hollow gear and a lengthened hollow bearing train forth in the gear train.
Abstract:
Conductive patterns are formed using formulations containing metallic particles, which may be copper. These metallic particles may be coated with a binder material that improves adhesion during photosintering of the formulations. The binder contains chemistry suitable for it to be removed from the particles in a separate process such as drying or thermal sintering. The coating is a non-volatile organic compound attached to the metallic particles with a minimum thickness oxide coating. The organic coating improves a coefficient of thermal expansion value match between the metallic particles and the substrate, which may be polymeric.
Abstract:
A cathodoluminescent lamp includes a filament configured to emit electrons responsive to a voltage applied across the filament, an anode configured to receive electrons emitted from the filament, an emitter comprising cathodoluminescent material, disposed in proximity to the anode, configured to emit photons responsive to stimulation from the electrons and a vacuum envelope configured to enclose the filament, anode, and emitter, and to maintain a vacuum over a path of the electrons. The filament comprises a smooth electron emitting surface. The cathodoluminescent material may comprise a semiconductor material.
Abstract:
A method for making metal nanorods comprises combining a source of metal cations with at least one surfactant to form a mixture, wherein the metal cations are reduced and the metal nanorods are produced. Metal nanorods produced by the method and uses thereof. The metal nanorods are useful in devices such as lateral flow devices.
Abstract:
A vehicle coating to thermally insulate the vehicle's interior is provided. The vehicle coating may be applied to the exterior (e.g., roof) of any suitable moving vehicle, such as a bus, RV, delivery truck, construction vehicle (e.g., cement mixer), train car. When applied to a vehicle's exterior, the vehicle coating provides the benefit of insulating the vehicle's interior from some of the sun's thermal energy, which would otherwise radiate into the vehicle and increase the interior temperature. The vehicle coating demonstrates advantageous thermal insulation properties (e.g., low thermal conductivity) over a wide range of temperatures and when applied with minimal thickness. The provided vehicle coating demonstrates high reflectance, high emissivity, low thermal conductivity, and high solar reflectance index (SRI), and is suitable for high vibration high uplift winds, which all contribute to its desirable properties for use as a thermally insulating vehicle coating.
Abstract:
To produce hexagonal boron nitride (h-BN), boron and nitrogen are added to a metallic solvent in a crucible in a reaction chamber and heat-treated. In an absorption step, a first soak is performed at a first temperature that is high enough to cause absorption of the nitrogen and boron into the metallic solvent. In a nucleation step after the absorption step, the first temperature is rapidly reduced to a second temperature, and h-BN nuclei are formed in the metallic solvent. In a growth step after the nucleation step, a second soak is performed at the second temperature to grow the h-BN nuclei. After the growth step, the h-BN nuclei are separated from the metallic solvent.
Abstract:
The present invention provides a modular reagent plate, comprising: a support rack comprising a frame and one or more separators, wherein two ends of each separator are respectively connected to the frame; and a base comprising a frame body, wherein the support rack is disposed on the frame body of the base and can be detachably combined with the base. A reagent vessel kit is also provided by assembling a reagent vessel to the above-described modular reagent plate. Unnecessary waste of reagent vessels can be avoided according to the present invention.