Abstract:
Provided are methods of forming a stack of electrodes and three-dimensional semiconductor devices fabricated thereby. The device may include electrodes sequentially stacked on a substrate to constitute an electrode structure. each of the electrodes may include a connection portion protruding horizontally and outward from a sidewall of one of the electrodes located thereon and an aligned portion having a sidewall coplanar with that of one of the electrodes located thereon or thereunder. Here, at least two of the electrodes provided vertically adjacent to each other may be provided in such a way that the aligned portions thereof have sidewalls that are substantially aligned to be coplanar with each other.
Abstract:
A system for controlling driving of a wearable robot may include a drive unit for operating a drive joint of the robot, a measurement unit for measuring an actual angle and an actual angular velocity of the drive joint in the robot, a sensing unit for determining a human torque applied by a wearing user to the drive joint, and a control unit for determining a target angular velocity of the robot by applying the determined human torque to an admittance model and for determining a required torque that may be input to the drive unit of the robot by applying an optimal control gain to a difference between the target angular velocity and the actual angular velocity of the robot.
Abstract:
A semiconductor device includes a substrate, a plurality of gate structures, a first insulating interlayer pattern, and a second insulation layer pattern. The substrate has an active region and a field region, each of the active region and the field region extends in a first direction, and the active region and the field region are alternately and repeatedly arranged in a second direction substantially perpendicular to the first direction. The gate structures are spaced apart from each other in the first direction, each of the gate structures extends in the second direction. The first insulation layer pattern is formed on a portion of a sidewall of each gate structure. The second insulation layer pattern covers the gate structures and the first insulation layer pattern, and has an air tunnel between the gate structures, the air tunnel extending in the second direction.
Abstract:
The present invention relates to methods for the diagnosis and evaluation of BNP-related diseases. In particular, patient test samples are analyzed for the presence and amount of a plurality of natriuretic peptides, and a combined natriuretic peptide result is used as a diagnostic marker.
Abstract:
Provided is a semiconductor chip. The semiconductor chip includes a semiconductor substrate including a main chip region and a scribe lane region surrounding the main chip region. An insulating layer is disposed over the semiconductor substrate. A guard ring is disposed in the insulating layer in the scribe lane region. The guard ring surrounds at least a portion of the main chip region. The guard ring has a brittleness greater than a brittleness of the insulating layer.
Abstract:
A system for simulating interdependencies between multiple critical physical infrastructure models includes a first infrastructure data model that models a first physical infrastructure; a second infrastructure data model that models a second physical infrastructure, wherein the second physical infrastructure is a different physical infrastructure from the first physical infrastructure; a simulation engine adapted to automatically produce a change in the second infrastructure data model in response to a change in the first infrastructure data model; a user interface permitting a user to interact with the simulation engine; wherein the user interface and the simulation engine are configured such that the user can disable an element of the first physical infrastructure, and subsequently re-enable the element of the first physical infrastructure; wherein the first infrastructure data model comprises a transport network; and wherein the second infrastructure data model comprises a channel network.
Abstract:
A semiconductor package mainly includes a leadframe and a first semiconductor chip such as an application specific integrated circuit (ASIC) encapsulated in a first package body having a cavity for receiving a second semiconductor chip such as a pressure sensor chip, and a cover disposed over the cavity of the first package body. At least a portion of the first package body is formed between the second semiconductor chip and the die pad such that the second semiconductor chip is directly disposed on the portion of the first package body instead of the die pad.
Abstract:
A light guide plate includes a first surface having a light incident surface and a light reflect surface, a second surface facing the first surface, through which the reflected light exits, a first edge surface connected between edges of the light reflect surface and the second surface, and a second edge surface connected between edges of the light incident surface and the second surface, being opposite to the first edge surface. A light source is disposed on the light incident surface. A light guide plate may also include a stepped edge portion formed at a marginal area of the light guide plate on which a light source is combined. The stepped edge portion includes a light incident surface, a light reflect surface, an upper surface through which the reflected light exits the light guide plate, and a first edge surface connected between edges of the light reflect surface and the upper surface, being opposite to the stepped edge portion. A backlight assembly includes the light guide plate, a lamp unit including lamps and a lamp reflector that are disposed on the light incident surface, and a mold frame for receiving the stepped edge portion and the lamp unit.
Abstract:
There are provided a backlight assembly (200) and an LCD apparatus (110) having the same. A lamp unit (210, 220) is received in a first receiving container (300) having a first bottom surface (350) and a first sidewall (310) so that the lamp unit (210) faces the first sidewall. The lamp unit (210, 220) and the first receiving container (300) are received in a second receiving container (500) having a second bottom surface (550) and a second sidewall (510). A heat transfer member (261, 263) comprised of metal material having superior heat conductivity makes contact with the second receiving container (500) through the lamp unit (210, 220). The heat emitted from the lamp unit (210, 263) and discharged to exterior. Accordingly, the backlight assembly and the LCD apparatus may improve display characteristics thereof.
Abstract:
A supporting unit includes a first support frame, a second support frame and an impurity barrier. The first support frame supports an LCD panel, and includes an opening through which a light is supplied to the LCD panel. The second support frame is protruded from sides of the first support frame to surround sides of the LCD panel. The impurity barrier is disposed on a surface of the first support frame corresponding to the liquid crystal display panel to prevent an inflow of impurities into a space between the first support frame and the liquid crystal display panel. Therefore, the supporting unit for the LCD panel includes the impurity barrier to prevent the inflow of the impurities that is externally provided into the space between the supporting unit and the LCD panel, thereby improving image display quality.