Abstract:
Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10-1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core-shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.
Abstract:
Exemplary embodiments provide MQW semiconductor devices and methods for their manufacture. The MQW semiconductor devices can be formed by growing a MQW active region over a nanoscale periodic strain array. By using the nanoscale periodic strain array, the position, size, and composition of the In-rich clusters in the MQW active region can be controlled. This control of In-rich clusters can result in tighter wavelength control, which can be important for applications, such as, for example, lasers and LEDs.
Abstract:
In one embodiment, the present invention provides a microlens having very small focal length. The present invention also provides a non-planar microstructure having a covering layer which is slowly oxidizing or substantially free of oxygen. The present invention also provides methods for forming such microlenses and microstructures. In addition, the present invention provides a VCSEL which includes one or more non-planar microstructures of the present invention.