Abstract:
A method and apparatus are provided for implementing loading and heat removal for a hub module assembly. The hub module assembly includes a hub chip and a plurality of optical modules attached by land grid array (LGA) assembly disposed on a top surface metallurgy (TSM) LGA residing on a hub ceramic substrate. The ceramic substrate is connected to a circuit board through a bottom surface metallurgy (BSM) LGA assembly. A base alignment ring includes a plurality of alignment features for engaging the circuit board and locating an LGA interposer of the BSM LGA assembly. Each of a pair of top alignment rings includes cooperating alignment features for engaging and locating a respective LGA interposer of respective LGA sites of the TSM LGA assembly. The two LGA interposers of the TSM LGA assembly align, retain, and make the electrical connection between the optical modules and the hub chip.
Abstract:
Precast curable thermal interface adhesives facilitating the easy and repeatable separation and remaining of electronic components at thermal interfaces thereof, and a method for implementing the foregoing repeatable separation and remating at the thermal interfaces of components through the use of such adhesives.
Abstract:
A multi-chip electronic package and methods of manufacture are provided. The structure includes a lid encapsulating at least one chip mounted on a chip carrier; at least one seal shim fixed between the lid and the chip carrier, the at least one seal shim forming a gap between pistons of the lid and respective ones of the chips; and thermal interface material within the gap and contacting the pistons of the lid and respective ones of the chips.
Abstract:
A method and apparatus are provided for implementing loading and heat removal for a hub module assembly. The hub module assembly includes a hub chip and a plurality of optical modules attached by land grid array (LGA) assembly disposed on a top surface metallurgy (TSM) LGA residing on a hub ceramic substrate. The ceramic substrate is connected to a circuit board through a bottom surface metallurgy (BSM) LGA assembly. A base alignment ring includes a plurality of alignment features for engaging the circuit board and locating an LGA interposer of the BSM LGA assembly. Each of a pair of top alignment rings includes cooperating alignment features for engaging and locating a respective LGA interposer of respective LGA sites of the TSM LGA assembly. The two LGA interposers of the TSM LGA assembly align, retain, and make the electrical connection between the optical modules and the hub chip.
Abstract:
A thermal conducting mixture is provided which is used to make thermal conducting formulations such as a paste having a high thermal conductivity and a relatively low viscosity. The paste is used to provide a thermal conductor connection between an electronic component and a cooling device to increase the heat transfer rate between the component and the device cooling the electronic component. The formulation contains the mixture of thermally conductive particles in various particle size ranges typically dispersed in a non-aqueous dielectric carrier containing an antioxidant and a dispersant with the thermally conductive particles mixture being specially correlated in the mixture by volume % based on particle size range and by particle size ratio of each particle size range. The mixture may be used to make other similar products such as thermal gels, adhesives, slurries and composites, for electronic and cosmetics, pharmaceuticals, automotive, and like products.
Abstract:
A thermal conducting mixture is provided which is used to make thermal conducting formulations such as a paste having a high thermal conductivity and a relatively low viscosity. The paste is used to provide a thermal conductor connection between an electronic component and a cooling device to increase the heat transfer rate between the component and the device cooling the electronic component. The formulation contains the mixture of thermally conductive particles in various particle size ranges typically dispersed in a non-aqueous dielectric carrier containing an antioxidant and a dispersant with the thermally conductive particles mixture being specially correlated in the mixture by volume % based on particle size range and by particle size ratio of each particle size range. The mixture may be used to make other similar products such as thermal gels, adhesives, slurries and composites, for electronic and cosmetics, pharmaceuticals, automotive, and like products.
Abstract:
The present invention provides chip containing electronic devices such as Multichip Ceramic Modules (MCM's) containing a plurality of chips on a substrate which chips are underfilled with a reworkable composition which allows one or more chips to be removed from the device and replaced. The reworkable compositions contain a base resin which is not cross-linkable and which forms a matrix with a linear curable component or preferably a combination of linear curable components which curable components are cross-linkable and when cured form a cross-linked domain in the base resin matrix. A suitable cross-linking catalyst such as Pt is used and optionally a filler preferably silane surface treated silica. The preferred base resin is linear polydimethylsiloxane and the preferred curable components are vinyl terminated linear poly dimethyl siloxane and hydrogen terminated linear poly dimethyl siloxane.
Abstract:
A cooling system for an electronic component on a component carrier is provided. The system includes a frame, a spray manifold, and a sealing member. The frame has an opening and is connectable to the component carrier so that an annular area is defined between the opening and the electronic component. The spray manifold is sealed over the opening to define a spray area over a back surface of the electronic component. The spray manifold sprays a cooling fluid on the back surface. The sealing member seals the annular region so that input/output connectors on the component carrier are isolated from the cooling fluid.
Abstract:
The present invention is directed to a process of a method for the full metallization of thru-holes in a polymer structure comprising the steps of applying a film-forming amount of a conductive polymer-metal composite paste to a metal cathode; bonding a patterned polymer structure to said paste; subjecting said polymer structure to an electrolytic plating bath for a time sufficient to fully metallize thru-hole surfaces in said patterned polymer structure and removing the structure from the cathode assembly. The fully metallized thru-hole polymer structure can then be cleaned and polished to produce a finished product.