Abstract:
A method of forming a mask pattern, a method of forming a minute pattern, and a method of manufacturing a semiconductor device using the same, the method of forming the mask pattern including forming first mask patterns on a substrate; forming first preliminary capping layers on the first mask patterns; irradiating energy to the first preliminary capping patterns to form second preliminary capping layers ionically bonded with the first mask patterns; applying an acid to the second preliminary capping layers to form capping layers; forming a second mask layer between the capping layers, the second mask layer having a solubility lower than that of the capping layers; and removing the capping layers to form second mask patterns.
Abstract:
A method of manufacturing a semiconductor device includes forming a resist pattern on a first region on a substrate, bringing a descum solution including an acid source into contact with the resist pattern and with a second region of the substrate, decomposing resist residues remaining on the second region of the substrate by using acid obtained from the acid source in the descum solution and removing the decomposed resist residues and the descum solution from the substrate.
Abstract:
Provided is a method for forming patterns of a semiconductor device. According to the method, first mask patterns may be formed on a substrate, and second mask patterns may be formed on sidewalls of each first mask pattern. Third mask patterns may fill spaces formed between adjacent second mask patterns, and the second mask patterns may be removed. A portion of the substrate may then be removed using the first and third mask patterns as etch masks.
Abstract:
A method of forming a semiconductor device includes forming a first mask pattern on a target layer, the first mask pattern exposing a first portion of the target layer, forming an intermediate material layer, including depositing an intermediate material layer film on a side of the first mask pattern and the first portion of the target layer, and thinning the intermediate material layer film to form the intermediate material layer, forming a second mask pattern that exposes a second portion of the intermediate material layer, removing the exposed second portion of the intermediate material layer to expose the target layer, and patterning the target layer using the first and second mask patterns as patterning masks.
Abstract:
A method of forming fine patterns of a semiconductor device according to a double patterning process that uses acid diffusion is provided. In this method, a plurality of first mask patterns are formed on a substrate so as to be separated from one another. A capping film including an acid source is formed on sidewalls and an upper surface of each of the plurality of first mask patterns. A second mask layer is formed on the capping films. A plurality of acid diffused regions are formed within the second mask layer by diffusing acid obtained from the acid source from the capping films into the second mask layer. A plurality of second mask patterns are formed of residual parts of the second mask layer which remain in the first spaces after removing the acid diffused regions of the second mask layer.
Abstract:
Provided are a nonvolatile memory device and a method of manufacturing the same. A floating gate electrode of the nonvolatile memory device may have a cross-shaped section as taken along a direction extending along a control gate electrode. The floating gate electrode may have an inverse T-shaped section as taken along a direction extending along an active region perpendicular to the control gate electrode. The floating gate electrode may include a lower gate pattern, a middle gate pattern and an upper gate pattern sequentially disposed on a gate insulation layer, in which the middle gate pattern is larger in width than the lower gate pattern and the upper gate pattern. A boundary between the middle gate pattern and the upper gate pattern may have a rounded corner.
Abstract:
Methods of forming fine patterns of a semiconductor device include forming a positive first photoresist layer on a semiconductor substrate, including initiating an exposure reaction at a first dose. The first photoresist layer is exposed and developed to form first photoresist patterns. A second photoresist layer is formed on a region of the semiconductor substrate including the first photoresist patterns, including terminating an exposure reaction at a second dose no greater than the first dose. The second photoresist layer is exposed and developed to form second photoresist patterns between the first photoresist patterns. Methods of forming fine patterns having a negative first photoresist layer are also provided.
Abstract:
The present invention provides polymeric films including polymers having an sp3 carbon main frame including a tetrahedral center atom. Methods of forming the same, hard marks including the same and methods of forming fine patterns using the same are also provided.
Abstract translation:本发明提供了聚合物膜,其包括具有包含四面体中心原子的sp 3 O 3碳主框的聚合物。 还提供了形成它们的方法,包括其的硬标记和使用其形成精细图案的方法。
Abstract:
In one aspect, a bottom layer resist polymer has an expanded p-electron conjugation system based on a monomer unit having a 3,3′-diindenyl structure. The bottom layer resist polymer of this aspect is composed of a repeat unit having the 3,3′-diindenyl structure represented by the following formula: where l, m and n are respective mole fractions of monomer units of the polymer, where l+m+n=1, where l=0.1 to 0.9, m=0.1 to 0.9, and n=0 to 0.8, where each of k1 and k2 is independently 0 or 1, and each of R1, R2, R3 and R4 is independently a hydrogen atom or an unsaturated hydrocarbon, and where Z is a monomer unit including a bisphenol derivative.
Abstract:
A photosensitive polymer having a protecting group including a fused aromatic ring, and a photoresist composition including the photosensitive polymer are provided. The photosensitive polymer has an acid-labile protecting group at its polymer backbone, the acid-labile protecting group including a fused aromatic ring having formula: where R1 is hydrogen atom or alkyl group having from 1 to 4 carbon atoms; X is hydrogen atom, halogen, alkyl, or alkoxy; and y is an integer from 1 to 3, wherein the fused aromatic ring is a liner ring or branched ring with y greater than or equal to 2. A photoresist composition is also provided which includes the photosensitive polymer and a photoacid generator (PAG).