Abstract:
In a method of forming patterns, an object layer is formed on a substrate. Guide patterns are formed on the object layer. A brush layer is formed using a brush polymer on surfaces of the guide patterns. The brush polymer includes at least one of a first brush polymer and a second brush polymer. The first brush polymer includes a hydrophobic repeating unit and a hydrophilic terminal group having at least two hydroxyl groups. The second brush polymer includes a hydrophobic repeating unit and a hydrophilic random repeating unit having a hydroxyl group. A self-aligned layer is formed using a block copolymer on the brush layer to form blocks aligned around the guide patterns. At least a portion of the blocks is transferred to the object layer.
Abstract:
A method of forming a fine pattern includes forming pillar-shaped guides regularly arranged on a feature layer, forming a block copolymer layer on the feature layer around the pillar-shaped guides, phase separating the block copolymer layer, forming first domains regularly arranged on the feature layer with the pillar-shaped guides, forming a second domain on the feature layer surrounding the pillar-shaped guides and the first domains, removing the first domains, and forming holes corresponding with the first domains in the feature layer by etching the feature layer using the pillar-shaped guides and the second domain as etch masks. The block copolymer layer includes a polymer blend having first and second polymer blocks having first and second repeat units, respectively, a first homopolymer and a second homopolymer. The first domains include the first polymer block and the first homopolymer, and the second domain includes the second polymer block and the second homopolymer.
Abstract:
A method of forming fine patterns of a semiconductor device according to a double patterning process that uses acid diffusion is provided. In this method, a plurality of first mask patterns are formed on a substrate so as to be separated from one another. A capping film including an acid source is formed on sidewalls and an upper surface of each of the plurality of first mask patterns. A second mask layer is formed on the capping films. A plurality of acid diffused regions are formed within the second mask layer by diffusing acid obtained from the acid source from the capping films into the second mask layer. A plurality of second mask patterns are formed of residual parts of the second mask layer which remain in the first spaces after removing the acid diffused regions of the second mask layer.
Abstract:
A method of patterning a substrate includes processing first regions of the substrate to form a first pattern, the first regions defining a second region between adjacent first regions, arranging a block copolymer on the first and second regions, the block copolymer including a first component and a second component, the first component of the block copolymer being aligned on the first regions, and selectively removing one of the first component and the second component of the block copolymer to form a second pattern having a pitch that is less than a pitch of a first region and an adjacent second region.
Abstract:
For patterning during integrated circuit fabrication, a first pattern of first masking structures is formed, and a buffer layer is formed on exposed surfaces of the first masking structures. Also, a second pattern of second masking structures is formed in recesses between the buffer layer at sidewalls of the first masking structures. Furthermore, the first and masking structures are formed from spin-coating respective high carbon containing materials. Such first and second masking structures pattern a target layer with higher pitch than possible with traditional photolithography.
Abstract:
A thinner composition includes propylene glycol ether acetate, methyl 2-hydroxy-2-methyl propionate, and an ester compound such as ethyl lactate, ethyl 3-ethoxy propionate or a mixture thereof.
Abstract:
A method of forming fine patterns of a semiconductor device by using carbon (C)-containing films includes forming an etching target film on a substrate including first and second regions; forming a plurality of first C-containing film patterns on the etching target film in the first region; forming a buffer layer which covers top and side surfaces of the plurality of first C-containing film patterns; forming a second C-containing film; removing the second C-containing film in the second region; exposing the plurality of first C-containing film patterns by removing a portion of the buffer layer in the first and second regions; and etching the etching target film by using the plurality of first C-containing film patterns, and portions of the second C-containing film which remain in the first region, as an etching mask.
Abstract:
A method of patterning a substrate includes processing first regions of the substrate to form a first pattern, the first regions defining a second region between adjacent first regions, arranging a block copolymer on the first and second regions, the block copolymer including a first component and a second component, the first component of the block copolymer being aligned on the first regions, and selectively removing one of the first component and the second component of the block copolymer to form a second pattern having a pitch that is less than a pitch of a first region and an adjacent second region.
Abstract:
A thinner composition includes propylene glycol ether acetate, methyl 2-hydroxy-2-methyl propionate, and an ester compound such as ethyl lactate, ethyl 3-ethoxy propionate or a mixture thereof.
Abstract:
An adhesive compound for use with a photoresist, the compound represented in accordance with the following chemical formula, A method for forming a photoresist pattern using the adhesive compound is also disclosed.