Abstract:
A curable composition comprising a fluorinated amorphous fluoropolymer, and fluorinated polyol crosslinking agent of the Rf—[(CH2)y—OH]x, where Rf represents a perfluoroalkylene group of valence x, subscript y is 1 or 2; and subscript x is 2 to 4.
Abstract:
A silicon-containing polymer is represented by the general formula: (I) wherein A, Q, Z, x, and y are as defined in the specification, and I is iodine. Group Q includes a hydrolyzable silane group and group A is fluorinated. A method of making the silicon-containing polymer is also disclosed.
Abstract:
A moisture-curable composition includes a polymer preparable by free-radical copolymerization of monomers comprising at least one monomer A and at least one monomer B. Monomer(s) A comprise free-radically polymerizable hydrolyzable silane. Monomer(s) B include a divalent group selected from the group consisting of —(CF2O)a—, —(CF2CF2O)b—, —(CF2CF2CF2O)c—, —(CF2CF2CF2CF2O)d—, —(CF2CF(CF3)O)e—, and combinations thereof, wherein a, b, c, d, and e represent integers in the range of from 0 to 130, and wherein 1≦
Abstract:
Described herein is a composition comprising a fluoropolymer derived from the polymerization of a polymerizable fluorinated olefnic monomer and a hydrocarbon olefin-containing perfluoro vinyl ether monomer selected from CF2═CFO—Rf—CH═CH2, wherein Rf is a perfluorinated group with the proviso that the Rf group does not comprise 2 or 3 catenated atoms between the oxygen atom of the vinyl ether group and the vinyl group.
Abstract:
Described herein is a melt-processible polymer composition comprising: a non-fluorinated melt-processible polymer; and a fluoropolymer derived from the polymerization of a monomer and a sulfinate-containing molecule, wherein the sulfinate-containing molecule is selected from the group consisting of: (a) CX1X3═CX2—(R)p—CZ1Z2—SO2M Formula (I) (b) Formula (II); and (c) combinations thereof, wherein X1, X2, and X3 are each independently selected from H, F, Cl, a C1 to C4 alkyl group, and a C1 to C4 fluorinated alkyl group; R is a linking group; Z1 and Z2 are independently selected from F, CF3, and a perfluoroalkyl group; R1 and R2 are end-groups; p is 0 or 1; m is at least 2; and M is a cation.
Abstract:
A method of making α,ω-diiodoperfluoroalkanes includes combining: diatomic iodine, at least one perfluoroalkylene oxide represented by the formula wherein Rf represents a perfluoroalkyl group; and at least one of: a) a first metallic compound comprising nickel, and a second metallic compound comprising molybdenum that is compositionally different from the first metallic compound; or b) a metallic alloy comprising from 50 to 70 percent by weight of nickel and from 20 to 40 percent by weight of molybdenum, based on the total weight of the metallic alloy, thereby producing at least one product represented by the formula I(CF2)nI, wherein n independently represents an integer in the range of from 1 to 11. The total weight of the at least one product wherein n is 3 or greater exceeds the total weight of the at least one product wherein n is 1 or 2 by a factor of at least 4.
Abstract:
Copolymers containing at least one perfluoropolyether segment and multiple aminooxalylamino groups are described. Methods of making the copolymers are also described. The copolymers can be prepared by reacting an oxalylamino-containing compound and an amine compound having at least two primary amino groups, at least two secondary amino groups, or at least one primary amino group plus at least one secondary amino group.
Abstract:
Described herein are compounds according to Formula (I) wherein Rf is a perfluorinated divalent group comprising 2 to 12 carbon atoms; and Z is selected from —CH═CH2, and —CH2CH═CH. A method of making the compound from a functionalized vinyl ether and ammonia is disclosed. In one embodiment, the functionalized triazine-containing compound is used in the polymerization of a fluoropolymer. In another embodiment, the functionalized triazine-containing compound is used in a curable fluoropolymer composition and cured to form articles.
Abstract:
Described herein is a method of making a fluoropolymer, the method comprising: providing an aqueous mixture comprising a fluorinated monomer, and an initiator; polymerizing the aqueous mixture under free radical conditions; and adding perfluoromethyl iodide during the polymerization to provide an aqueous dispersion of the fluoropolymer, wherein the amount of perfluorooctanoic acid or salt thereof in the aqueous dispersion of the fluoropolymer is not more than 25 nanograms per gram of the fluoropolymer.