Abstract:
A pixel structure, an array substrate and a display device. The pixel substrate comprises a first pixel electrode and a second pixel electrode arranged in a first direction, and a thin film transistor (TFT) disposed between the first pixel electrode and the second pixel electrode. The TFT includes a comb-shaped source, a comb-shaped first drain and a comb-shaped second drain; and a channel region of the TFT is defined by the comb-shaped source respectively and the comb-shaped first drain and the comb-shaped second drain. The channel region has a greater ratio of width to length, thus improving the driving capability of the TFT for driving the first pixel electrode and the second pixel electrode.
Abstract:
Embodiments of this disclosure provide a transparent display panel and a manufacturing method thereof, and a display device. The transparent display panel comprises a plurality of light-emitting regions and a plurality of transparent regions. The transparent display panel further comprises at least one light-guiding component disposed on a light-emitting side of the transparent display panel, wherein the at least one light-guiding component is configured to transmit a part of light emitted from the light-emitting regions to the transparent regions. In the transparent display panel, a light-guiding component is used to transmit the light emitted by the light-emitting subpixels in the light-emitting regions to the transparent regions, and a plurality of light-redirecting members formed on a surface of the light-guiding component are used to change the direction of light transmitted to the transparent regions and to emit the light from the light-emitting side of the transparent regions. As a result, display uniformity of the whole transparent display panel is improved, and a better display performance can be achieved.
Abstract:
A display substrate includes a first base substrate; a gate line, a data line and a common electrode line arranged on the first base substrate; a plurality of pixel units each including a first sub-pixel electrode, a second sub-pixel electrode, a first thin film transistor, a second thin film transistor and a third thin film transistor; and a charge adjustment-control line arranged on the first base substrate, where the charge adjustment-control line and the gate line are between the first sub-pixel electrode and the second sub-pixel electrode. The first thin film transistor is connected to the gate line, the data line and the first sub-pixel electrode; the second thin film transistor is connected to the gate line, the data line and the second sub-pixel electrode; the third thin film transistor is connected to the charge adjustment control line, the first sub-pixel electrode and the common electrode line.
Abstract:
An electroluminescent device and manufacturing method thereof are provided. The electroluminescence device comprises an array substrate (10). The array substrate (10) comprises a substrate (11); and a thin film transistor (12), a protection layer (13) and a connection electrode (14) provided in turn on the substrate (11). The protection layer (13) covers the thin film transistor (12); and the connection electrode (14) is provided on the protection layer (13). The protection layer (13) below the connection electrode (14) protrudes towards a side away from the substrate (11) to form a boss (131). The protection layer (13) comprises a via hole (132) provided at a position corresponding to a drain electrode (122) of the thin film transistor (12). The connection electrode (14) is connected with the drain electrode (122) of the thin film transistor (12) through the via hole (132). The electroluminescent device and manufacturing method thereof shorten the film formation time, reduce the etching difficulty and accordingly improves the production efficiency in the process of manufacturing the connection electrode while the reliability of electrical connection between a thin film transistor and a second electrode is improved.
Abstract:
An electroluminescent device and its manufacture method are disclosed. The electroluminescent device comprises a color film substrate (20) comprising a substrate (21) and a color filter layer, a boss layer (27), a first electrode (24), an organic electroluminescence layer (25) and a second electrode (26) disposed on the substrate (21); said color filter layer comprises a black matrix (221) and color blocks (222) separated by the black matrix (221); said boss layer (27) is disposed between said color filter layer and said first electrode (24), and the boss layer located above the color blocks (222) protrudes towards the side away from the substrate (21) to form a boss (271); said first electrode (24), said organic electroluminescence layer (25) and said second electrode (26) are disposed on the boss layer (27) orderly, and the second electrode (26) is located above said boss (271). In this electroluminescent device, the reliability of the electrical connection between the thin film transistors and the second electrode can be assured, and the etching difficulty during the manufacture process can be reduced, thereby improving the production efficiency.
Abstract:
A pixel structure, an array substrate, a display panel and a display apparatus are disclosed. The pixel structure includes: a first pixel electrode and a second pixel electrode which are arranged along a first direction, and a TFT between the first pixel electrode and the second pixel electrode. The first pixel electrode includes a first extension electrode extending toward the second pixel electrode, and the second pixel electrode includes a second extension electrode extending toward the first pixel electrode; the TFT includes a gate electrode, a source electrode, a first drain electrode and a second drain electrode which are insulated from each other; the source electrode includes a first opening and a second opening, the first drain electrode is connected with the first extension electrode and extends into the first opening, and the second drain electrode is connected with the second extension electrode and extends into the second opening.
Abstract:
Embodiments of the disclosure disclose an electroluminescence display device and a fabrication method thereof The electroluminescence display device comprises an opposed substrate (20) and an array substrate (10). The array substrate (10) comprises: a first substrate (11), and a thin film transistor (12), a first protective layer (131) and a first connection electrode (141) sequentially disposed on the first substrate (11). The first connection electrode (141) is connected to a drain electrode of the thin film transistor (12). The opposed substrate (20) comprises: a second substrate (21), and a first electrode (24), an organic electroluminescence layer (25) and a second electrode (26) sequentially disposed on the second substrate (21). The second electrode (26) and the first connection electrode (141) are connected with each other by a conductive adhesive (40). Thereby, the reliability of the electrical connection between the thin film transistor and the second electrode is enhanced, a film-forming time in the fabrication process of the connection electrode is shortened, and etching difficulty of the connection electrode reduced, and thus the productivity is improved.
Abstract:
The present invention discloses a flexible display substrate including a first flexible substrate and a plurality of display elements disposed on a first side of the first flexible substrate, each of the display elements including a thin film transistor. The flexible display substrate further includes a plurality of protrusions each provided on a second side of the first flexible substrate opposite to the first side and corresponding to a respective thin film transistor in a thickness direction of the first flexible substrate. A projection area of each protrusion, in the thickness direction of the first flexible substrate, on the second side of the first flexible substrate at least partially overlaps with a projection area of the thin film transistor corresponding to the protrusion, in the thickness direction of the first flexible substrate, on the second side of the first flexible substrate. In the present invention, it can avoid or alleviate the damage to the thin film transistor during bending the flexible display substrate.
Abstract:
An array substrate comprises a base substrate, a gate line, a data line and a thin film transistor arranged in an array on the base substrate, a pixel electrode and a passivation layer, the thin film transistor include a gate electrode, an active layer, a source electrode and a drain electrode, and the pixel electrode and the active layer, the drain are disposed in a same layer and formed integrally. A display device comprising the array substrate and a manufacturing method of the array substrate are further disclosed.
Abstract:
A method for fabricating a flexible display device is provided. The method comprises: attaching a first flexible substrate of the flexible display device onto a conductive adhesive layer, wherein the conductive adhesive layer is disposed on a conductive rigid substrate; fabricating other parts of the flexible display device on the first flexible substrate; aging the conductive adhesive layer; peeling off the flexible substrate from the conductive rigid substrate so as to obtain the flexible display device.