Abstract:
A method of forming a fin field effect transistor includes forming a fin and forming a source region on a first end of the fin and a drain region on a second end of the fin. The method further includes forming a dummy gate with a first semi-conducting material in a first pattern over the fin and forming a dielectric layer around the dummy gate. The method also includes removing the first semi-conducting material to leave a trench in the dielectric layer corresponding to the first pattern, thinning a portion of the fin exposed within the trench, and forming a metal gate within the trench.
Abstract:
A memory device includes a conductive structure, a number of dielectric layers and a control gate. The dielectric layers are formed around the conductive structure and the control gate is formed over the dielectric layers. A portion of the conductive structure functions as a drain region for the memory device and at least one of the dielectric layers functions as a charge storage structure for the memory device. The dielectric layers may include oxide-nitride-oxide layers.
Abstract:
A FinFET includes a fin formed on an insulating layer and a first gate material layer formed proximate to sides of the fin. The FinFET further includes a protective layer formed above the first gate material layer and the fin, and a second gate material layer formed above the protective layer and the fin. The second gate material layer may be formed into a gate for the fin that may be biased independently of gate(s) formed from the first gate material layer, thus providing additional design flexibility in controlling the potential in the fin during on/off switching of the FinFET.
Abstract:
A method of manufacturing a MOSFET type semiconductor device includes planarizing a gate material layer that is deposited over a channel. The planarization is performed in a multi-step process that includes an initial “rough” planarization and then a “fine” planarization. The slurry used for the finer planarization may include added material that tends to adhere to low areas of the gate material.
Abstract:
A method of manufacturing a semiconductor device may include forming a fin structure on an insulator. The fin structure may include side surfaces and a top surface. The method may also include depositing a gate material over the fin structure and planarizing the deposited gate material. An antireflective coating may be deposited on the planarized gate material, and a gate structure may be formed out of the planarized gate material using the antireflective coating.
Abstract:
A method of manufacturing a FinFET device includes forming a fin structure on an insulating layer. The fin structure includes a conductive fin. The method also includes forming source/drain regions and forming a dummy gate over the fin. The dummy gate may be removed and the width of the fin in the channel region may be reduced. The method further includes depositing a gate material to replace the removed dummy gate.
Abstract:
A method of manufacturing a semiconductor device may include forming a fin structure on an insulator and forming a gate structure over a channel portion of the fin structure. The method may also include forming a sacrificial oxide layer around the gate structure and removing the gate structure to define a gate recess within the sacrificial oxide layer. A metal gate may be formed in the gate recess, and the sacrificial oxide layer may be removed.
Abstract:
A method may include forming a gate electrode over a fin structure, depositing a first metal layer on a top surface of the gate electrode, performing a first silicide process to convert a portion of the gate electrode into a metal-silicide compound, depositing a second metal layer on a top surface of the metal-silicide compound, and performing a second silicide process to form a fully-silicided gate electrode.
Abstract:
A method includes forming a first rectangular mesa from a layer of semiconducting material and forming a first dielectric layer around the first mesa. The method further includes forming a first rectangular mask over a first portion of the first mesa leaving an exposed second portion of the first mesa and etching the exposed second portion of the first mesa to produce a reversed T-shaped fin from the first mesa.
Abstract:
Multiple semiconductor devices are formed with different threshold voltages. According to one exemplary implementation, first and second semiconductor devices are formed and doped differently, resulting in different threshold voltages for the first and second semiconductor devices.