Abstract:
The present invention relates to novel metathesis catalysts with an imidazolidine-based ligand and to methods for making and using the same. The inventive catalysts are of the formula wherein: M is ruthenium or osmium; X and X1 are each independently an anionic ligand; L is a neutral electron donor ligand; and, R, R1, R6, R7, R8, and R9 are each independently hydrogen or a substituent selected from the group consisting of C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, aryl, C1-C20 carboxylate, C1-C20 alkoxy, C2-C20 alkenyloxy, C2-C20 alkynyloxy, aryloxy, C2-C20 alkoxycarbonyl, C1-C20 alkylthiol, aryl thiol, C1-C20 alkylsulfonyl and C2-C20 alkylsulfinyl, the substituent optionally substituted with one or more moieties selected from the group consisting of C1-C10 alkyl, C1-C10 alkoxy, aryl, and a functional group selected from the group consisting of hydroxyl, thiol, thioether, ketone, aldehyde, ester, ether, amine, imine, amide, nitro, carboxylic acid, disulfide, carbonate, isocyanate, carbodiimide, carboalkoxy, carbamate, and halogen. The inclusion of an imidazolidine ligand to the previously described ruthenium or osmium catalysts has been found to dramatically improve the properties of these complexes. The inventive catalysts maintains the functional group tolerance of previously described ruthenium complexes while having enhanced metathesis activity that compares favorably to prior art tungsten and molybdenum systems.
Abstract:
The invention pertains to the use of Group 8 transition metal carbene complexes as catalysts for olefin cross-metathesis reactions. In particular, ruthenium and osmium alkylidene complexes substituted with an N-heterocyclic carbene ligand are used to catalyze cross-metathesis reactions to provide a variety of substituted and functionalized olefins, including phosphonate-substituted olefins, directly halogenated olefins, 1,1,2-trisubstituted olefins, and quaternary allylic olefins. The invention further provides a method for creating functional diversity using the aforementioned complexes to catalyze cross-metathesis reactions of a first olefinic reactant, which may or may not be substituted with a functional group, with each of a plurality of different olefinic reactants, which may or may not be substituted with functional groups, to give a plurality of structurally distinct olefinic products. The methodology of the invention is also useful in facilitating the stereoselective synthesis of 1,2-disubstituted olefins in the cis configuration.
Abstract:
This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
Abstract:
Aspects disclosed herein include a system for generating singlet oxygen in a gas, the system comprising: a substrate; and hexanuclear clusters operably immobilized on at least a portion of the substrate; wherein each hexanuclear cluster comprises a photosensitive octahedral core complex characterized by formula FX1a: M6X8 (FX1a); wherein each M is independently Mo, W, or Re; wherein each X is independently a halide anion ligand; wherein the clusters are exposed to the gas and the gas comprises O2 gas; wherein the clusters are exposed to a light; and wherein each hexanuclear cluster is a photosensitizer configured to generate the gaseous singlet oxygen when irradiated by the light in the presence of the O2 gas.
Abstract:
In an aspect, a method of synthesizing a graft copolymer comprises the steps of: copolymerizing a first macromonomer and a first reactive diluent; wherein said first macromonomer comprises a first backbone precursor directly or indirectly covalently linked to a first polymer side chain group; wherein said reactive diluent is provided in the presence of the first macromonomer at an amount selected so as to result in formation said graft copolymer having a first backbone incorporating said diluent and said first macromonomer in a first polymer block characterized by a preselected first graft density or a preselected first graft distribution of said first macromonomer. In some embodiments of this aspect, said preselected first graft density is any value selected from the range of 0.05 to 0.75. In some methods, the composition and amount of said diluent is selected to provide both a first preselected first graft density and a first preselected first graft distribution.
Abstract:
Electrolyte solutions including at least one anhydrous fluoride salt and at least one non-aqueous solvent are presented. The fluoride salt includes an organic cation having a charge center (e.g., N, P, S, or O) that does not possess a carbon in the β-position or does not possess a carbon in the β-position having a bound hydrogen. This salt structure facilitates its ability to be made anhydrous without decomposition. Example anhydrous fluoride salts include (2,2-dimethylpropyl)trimethylammonium fluoride and bis(2,2-dimethylpropyl)dimethylammonium fluoride. Combining these fluoride salts with at least one fluorine-containing non-aqueous solvent (e.g., bis(2,2,2-trifluoroethyl)ether; (BTFE)) promotes solubility of the salt within the non-aqueous solvents. The solvent may be a mixture of at least one non-aqueous, fluorine-containing solvent and at least one other non-aqueous, fluorine or non-fluorine containing solvent (e.g., BTFE and propionitrile or dimethoxyethane). The electrolyte solutions may be employed in electrochemical cells, such as batteries, fuel cells, electrolysis systems, and capacitors.
Abstract:
The present disclosure is directed to fluoride (F) ion batteries and F shuttle batteries comprising an anode with a solid electrolyte interphase (SEI) layer, a cathode comprising a core shell structure, and a liquid fluoride battery electrolyte. According to some aspects, the components therein enable discharge and recharge at room-temperature.
Abstract:
Anion-coordinating polymers comprising one or more anion-coordinating unit of Formula (I), optionally in combination with one or more cation-coordinating unit of Formula (II) and/or a linking unit of Formula (III) and related electrolytes, batteries, methods and system.
Abstract:
The present invention relates to novel metathesis catalysts with an imidazolidine-based ligand and to methods for making and using the same. The inventive catalysts are of the formula wherein: M is ruthenium or osmium; X and X1 are each independently an anionic ligand; L is a neutral electron donor ligand; and, R, R1, R6, R7, R8, and R9 are each independently hydrogen or a substituent selected from the group consisting of C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, aryl, C1-C20 carboxylate, C1-C20 alkoxy, C2-C20 alkenyloxy, C2-C20 alkynyloxy, aryloxy, C2-C20 alkoxycarbonyl, C1-C20 alkylthiol, aryl thiol, C1-C20 alkylsulfonyl and C2-C20 alkylsulfinyl, the substituent optionally substituted with one or more moieties selected from the group consisting of C1-C10 alkyl, C1-C10 alkoxy, aryl, and a functional group selected from the group consisting of hydroxyl, thiol, thioether, ketone, aldehyde, ester, ether, amine, imine, amide, nitro, carboxylic acid, disulfide, carbonate, isocyanate, carbodiimide, carboalkoxy, carbamate, and halogen. The inclusion of an imidazolidine ligand to the previously described ruthenium or osmium catalysts has been found to dramatically improve the properties of these complexes. The inventive catalysts maintains the functional group tolerance of previously described ruthenium complexes while having enhanced metathesis activity that compares favorably to prior art tungsten and molybdenum systems.
Abstract:
This invention relates to methods and compositions for preparing linear and cyclic polyolefins. More particularly, the invention relates to methods and compositions for preparing functionalized linear and cyclic polyolefins via olefin metathesis reactions. Polymer products produced via the olefin metathesis reactions of the invention may be utilized for a wide range of materials applications. The invention has utility in the fields of polymer and materials chemistry and manufacture.