Abstract:
A selective metal surface treatment process of a circuit board, which has a solder mask and a multiple of selective metal treatment surface areas, wherein the solder mask covers the surface of the circuit board but exposes the selective metal surface treatment areas, is provided. The selective metal surface treatment process includes using a printhead to selectively print a resist on a selective metal surface treatment area, performing a surface treatment of the other selective metal surface treatment areas, and removing the resist. A selective metal surface treatment apparatus used for performing the selective metal surface treatment process of the circuit board is also provided. Through the present invention, unnecessary waste of the materials in the process is reduced and the processing time is shortened.
Abstract:
An image sensor device including a substrate, a plurality of photo sensors, a dielectric layer, a planar layer, a plurality of color filters, a plurality of microlenses, and a shield layer is provided. The photo sensors are disposed in the substrate, and the dielectric layer is disposed over the photo sensors and the substrate. The planar layer is disposed over the dielectric layer. The color filters are disposed in the planar layer, wherein each of the color filters is disposed over each of the photo sensors. The microlenses are disposed over the planar layer, wherein each of the microlenses is disposed over each of the color filter. The shield layer including a plurality of openings is disposed in the planar layer and is disposed under or over the color filters, wherein each of the openings is disposed over each of the color filters.
Abstract:
A semiconductor wafer has at least one pre-layer on-wafer alignment mark (pre-layer on-wafer AM) on a top surface of the semiconductor wafer. A baseline check (BCHK) is performed to align a current-layer reticle AM on a current-layer reticle with the pre-layer on-wafer AM. By capturing and comparing signals of the current-layer reticle AM and the pre-layer on-wafer AM, a corresponding coordinate of the current-layer reticle to the semiconductor wafer is calibrated. Finally, a lithography process is performed to transfer the layout of the current-layer reticle AM to the top surface of the semiconductor wafer to form a corresponding current-layer on-wafer AM.
Abstract:
A developer cup. The developer cup includes a bed. A central spindle is vertically and rotatably coupled to a center of the bed through an end of the central spindle. A chuck is vertically coupled to an end of the central spindle opposite to the bed end. An upper coupling is coupled to the central spindle between the chuck and the bed, wherein the chuck. A lower coupling is moveably coupled to the central spindle between the upper coupling and the bed. The annular cup has an upper wheel and a lower wheel, wherein the upper wheel is aligned with the lower wheel, the upper wheel is coupled to the lower wheel through a plurality of the brackets, and the lower wheel is smaller than the upper wheel.
Abstract:
A photoresist dispense pump receives photoresist from two pipelines, a first pipeline and a second pipeline, and pumps out the photoresist through a third pipeline. The photoresist dispense pump contains a first bellows and a second bellows receiving photoresist from the second pipeline, wherein the first bellows and the second bellows are separated by a partition. Photoresist is fed into the third pipeline from the second bellows. On the center region of the partition, there is a central diaphragm that allows photoresist to flow in a direction from the first bellows toward the second bellows, but not in the reverse direction.
Abstract:
A method for fabricating an image sensor is disclosed. First, a semiconductor substrate is provided, in which a photosensitive region is defined on the semiconductor substrate. At least one photosensitive material is then formed on the semiconductor substrate, and a first exposure process is performed to form a tapered pattern in the photosensitive material. A second exposure process is performed to form a straight foot pattern in the photosensitive material, and a developing process is performed to remove the tapered pattern and straight foot pattern to form the photosensitive material into a plurality of photosensitive blocks. A reflow process is conducted thereafter to form the photosensitive blocks into a plurality of microlenses.
Abstract:
A wafer cleaning device comprising a wafer stage for holding a wafer having a surface to be washed, a first nozzle positioned above the wafer, a second nozzle positioned above the wafer. A first height is between the first nozzle and the surface and a second height is between the second nozzle and the surface, wherein the first height is shorter than the second height.
Abstract:
A circuit board including a first dielectric layer having a first surface and a second surface, a first circuit layer, a second dielectric layer, and a second circuit layer is provided. At least one trench is formed on the first surface, and the first circuit layer is formed on an inside wall of the trench. In addition, the second dielectric layer is disposed in the trench, and covers the first circuit layer. The second circuit layer is disposed in the trench, and the second dielectric layer is located between the first circuit layer and the second circuit layer. A manufacturing method of the circuit board is further provided.
Abstract:
A method for manufacturing micro-lenses of image sensors includes providing a semiconductor substrate having at least a planarization layer, performing a first photolithography process to form a first set of micro-lens blocks on the planarization layer, performing a first baking process to form a first set of micro-lenses, performing a first surface treatment to harden surfaces of the first set of micro-lenses, performing a second photolithography to form a second set of micro-lens blocks on the planarization layer, and performing a second baking process to form a second set of micro-lenses.
Abstract:
A method for manufacturing micro-lenses of image sensors includes providing a semiconductor substrate having at least a planarization layer, performing a first photolithography process to form a first set of micro-lens blocks on the planarization layer, performing a first baking process to form a first set of micro-lenses, performing a first surface treatment to harden surfaces of the first set of micro-lenses, performing a second photolithography to form a second set of micro-lens blocks on the planarization layer, and performing a second baking process to form a second set of micro-lenses.