Abstract:
Pneumatic rubber tire with an outer, circumferential tread comprised of a cis 1,4-polybutadiene-rich and silica-rich rubber composition which contains specified elastomers with spatially defined glass transition temperatures, in conjunction with silica and specified carbon black reinforcement.
Abstract:
The invention relates to a tire with a tread. The tread is composed of at least two defined elastomers having Tg's spaced apart by at least 55° C. to the exclusion of elastomers having Tg's between −30° and −85° C. The tread composition can be reinforced with either carbon black or a combination of carbon black and silica reinforcing fillers.
Abstract:
This invention is based upon the discovery that cyclized polyisoprene polymers can be incorporated into tire tread compounds to improve traction, treadwear, and resistance to tear. It is further based upon the discovery that cyclized polyisoprene polymers can be blended with halobutyl rubber and/or natural rubber and can be utilized in tire innerliner formulations. The present invention more specifically discloses a tire which is comprised of a generally toroidal-shaped carcass with an outer circumferential tread, two spaced beads, at least one ply extending from bead to bead and sidewalls extending radially from and connecting said tread to said beads, wherein said tread is adapted to be ground-contacting, and wherein said tread is comprised of a sulfur cured rubber composition which is comprised of about 5 phr to about 50 phr of cyclized polyisoprene and about 50 phr to about 95 phr of at least one other rubbery polymer. The present invention further discloses a tire which is comprised of a generally toroidal-shaped carcass with an outer circumferential tread, two spaced beads, an innerliner, at least one ply extending from bead to bead and sidewalls extending radially from and connecting said tread to said beads, wherein said innerliner is comprised of a sulfur cured rubber composition which is comprised of about 5 phr to about 50 phr of cyclized polyisoprene and about 50 phr to about 95 phr of at least one other rubbery polymer selected from the group consisting of natural rubber and halobutyl rubber.
Abstract:
High viscosity elastomers are often difficult to utilize in rubber compositions without first creating a pre-blend of the high viscosity elastomer and a rubber processing oil to reduce their overall viscosity. This invention relates to utilization of a specialized pre-blend of high viscosity and low viscosity elastomers for use in rubber compositions and to the resulting rubber composition. The use of such resulting rubber composition may be for component(s) of tires, particularly including tire treads. The specialized pre-blend of high and low viscosity elastomers is required to be created by blending individual latices or, alternatively, by blending individual polymerizates of elastomers with diverse viscosities.
Abstract:
This invention relates to a tire tread compound that is easily processable which can be used to improve the treadwear, rolling resistance and traction characteristics of tires. The tire tread compounds of this invention are a blend of tin-coupled polybutadiene, high vinyl polybutadiene and natural rubber. This blend of low glass transition temperature rubber and high glass transition temperature rubber is surprisingly easy to process which makes the concept of this invention commercially feasible. Thus, the tire tread compounds of this invention can be utilized in making tires having greatly improved traction characteristics and treadwear without sacrificing rolling resistance. These improved properties may be due, in part, to better interaction and compatibility with carbon black and/or silica fillers. The polybutadiene in the blend can be asymmetrical tin-coupled to further improve the cold flow characteristics of the rubber blend. Asymmetrical tin coupling in general also leads to better processability and other beneficial properties. This invention more specifically discloses a tire tread rubber composition which is comprised of (1) from about 20 phr to about 60 phr of tin-coupled polybutadiene rubber, (2) from about 20 phr to about 60 phr of a rubber selected from the group consisting of natural rubber and synthetic polyisoprene and (3) from about 5 phr to about 40 phr of high vinyl polybutadiene rubber.
Abstract:
The present invention relates to a rubber composition reinforced with a combination of silica and defined carbon black and to pneumatic tires having treads comprised of such rubber composition. The reinforced rubber composition comprises in one aspect, at least one elastomer, defined carbon black, precipitated silica and at least one silica coupling agent.
Abstract:
The subject invention discloses a pneumatic tire having an outer circumferential tread wherein said tread is a sulfur-cured rubber composition comprised of (a) an isoprene-butadiene diblock rubber, said isoprene-butadiene diblock rubber being comprised of a butadiene block and an isoprene-butadiene block, wherein said butadiene block has a number average molecular weight which is within the range of about 25,000 to about 350,000, wherein said isoprene-butadiene block has a number average molecular weight which is within the range of about 25,000 to about 350,000, wherein said isoprene-butadiene diblock rubber has essentially one glass transition temperature which is within the range of about -100.degree. C. to about -70.degree. C., wherein said isoprene-butadiene diblock polymer has a Mooney ML-4 viscosity at 100.degree. C. which is within the range of about 50 to about 140, wherein the repeat units derived from isoprene and 1,3-butadiene in the isoprene-butadiene block are in essentially random order, and wherein said isoprene-butadiene diblock polymer does not contain any blocks which are derived solely from isoprene; and (b) a second rubber selected from the group consisting of high vinyl polybutadiene rubber, styrene-isoprene-butadiene rubber, solution styrene-butadiene rubber and emulsion styrene-butadiene rubber.
Abstract:
A pneumatic runflat tire comprising a sidewall component comprising a rubber composition comprising at least one diene based elastomer and from about 1 to about 40 phr of glass bubbles having a crush strength of at least 10,000 psi as measured by ASTM D3102-78 in glycerol.
Abstract:
The present invention is directed to a camouflage tire suitable for use in various vehicle use environments wherein it is desirable to reduce or eliminate a viewer's visual perception of the tire against the given environmental background.
Abstract:
The invention relates to a tire of a structural combination of tire tread and sidewall components with compositional limitations containing minimal, if any, of in situ formed alcohol and methyl isobutyl ketone byproducts. The tread component rubber composition contains pre-hydrophobated silica reinforcement. The sidewall component contains low unsaturation EPDM or brominated copolymer of isobutylene and p-methylstyrene and may contain pre-hydrophobated silica reinforcement. The silica reinforcement for said tread and sidewall components is a pre-hydrophobated precipitated silica. The pre-hydrophobated silica is prepared, prior to mixing with the elastomer(s), by reacting hydroxyl groups (e.g. silanol groups) contained on the surface of a precipitated silica with an alkoxyorganomercaptosilane or a combination of an alkoxyorganomercaptosilane and a substituted alkylsilane or with a bis-3(trialkoxysilylalkyl) polysulfide which contains an average of from 2 to 4 connecting sulfur atoms in its polysulfidic bridge to form a composite thereof. The alcohol byproduct therefrom is removed from the composite prior to its introduction into the rubber composition(s). In another aspect of the invention, the connecting sidewall rubber composition, and optionally the tread composition is free of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine antidegradant (referred herein to as 6PPD) in order to prevent in situ formation of methyl isobutyl ketone byproduct from the reaction of 6PPD with atmospheric oxygen and/or ozone.