Abstract:
Methods for forming an eDRAM with replacement metal gate technology and the resulting device are disclosed. Embodiments include forming first and second dummy electrodes on a substrate, each dummy electrode having spacers at opposite sides and being surrounded by an ILD; removing the first and second dummy electrodes, forming first and second cavities, respectively; forming a hardmask over the substrate, exposing the first cavity; forming a deep trench in the substrate through the first cavity; removing the hardmask; and forming a capacitor in the first cavity and deep trench and concurrently forming an access transistor in the second cavity.
Abstract:
A method of forming a FinFET fin with low-doped and a highly-doped active portions and/or a FinFET fin having tapered sidewalls for Vt tuning and multi-Vt schemes and the resulting device are provided. Embodiments include forming an Si fin, the Si fin having a top active portion and a bottom active portion; forming a hard mask on a top surface of the Si fin; forming an oxide layer on opposite sides of the Si fin; implanting a dopant into the Si fin; recessing the oxide layer to reveal the active top portion of the Si fin; etching the top active portion of the Si fin to form vertical sidewalls; forming a nitride spacer covering each vertical sidewall; recessing the recessed oxide layer to reveal the active bottom portion of the Si fin; and tapering the active bottom portion of the Si fin.
Abstract:
A method of fabricating a raised fin structure including a raised contact structure is provided. The method may include: providing a base fin structure; providing at least one ancillary fin structure, the at least one ancillary fin structure contacting the base fin structure at a side of the base fin structure; growing a material over the base fin structure to form the raised fin structure; and, growing the material over the at least one ancillary fin structure, wherein the at least one ancillary fin structure contacting the base fin structure increases a volume of material grown over the base fin structure near the contact between the base fin structure and the at least one ancillary fin structure to form the raised contact structure.
Abstract:
A method of forming a multi-valued logic transistor with a small footprint and the resulting device are disclosed. Embodiments include forming plural fins on a silicon substrate, each fin covered with a hardmask; filling spaces between the fins and hard masks with an oxide; removing the hardmasks and recessing each fin, forming a cavity in the oxide over each fin; forming plural Si-based layers in each cavity with an increasing percentage of Ge or C or with an decreasing concentration of dopant from a bottom layer to a top layer; performing CMP for planarization to a top of the fins; recessing the oxide to a depth slightly below a top portion of the fin having a thickness equal to a thickness of each Si-based layer; and forming a high-k gate dielectric and a metal gate electrode over the plural Si-based layers.
Abstract:
A method of reducing parasitic capacitance includes providing a starting semiconductor structure, the starting semiconductor structure including a semiconductor substrate with fin(s) thereon, the fin(s) having at least two dummy transistors integrated therewith and separated by a dielectric region, the dummy transistors including dummy gates with spacers and gate caps, the fin(s) having ends tucked by the dummy gates. The method further includes removing the dummy gates and gate caps, resulting in gate trenches, protecting area(s) of the structure during fabrication process(es) where source/drain parasitic capacitance may occur, and forming air-gaps at a bottom portion of unprotected gate trenches to reduce parasitic capacitance. The resulting semiconductor structure includes a semiconductor substrate with fin(s) thereon, FinFET(s) integral with the fin(s), the FinFET(s) including a gate electrode, a gate liner lining the gate electrode, and air-gap(s) in gate trench(es) of the FinFET(s), reducing parasitic capacitance by at least about 75 percent as compared to no air-gaps.
Abstract:
A FinFET has shaped epitaxial structures for the source and drain that are electrically isolated from the substrate. Shaped epitaxial structures in the active region are separated from the substrate in the source and drain regions while those in the channel region remain. The gaps created by the separation in the source and drain are filled with electrically insulating material. Prior to filling the gaps, defects created by the separation may be reduced.
Abstract:
In one illustrative embodiment, the present disclosure is directed to a method involving fabricating an NMOS transistor device having a substrate and a gate structure disposed over the substrate, the substrate including a channel region underlying, at least partially, the gate structure, the fabricating including: forming a source and drain cavity in the substrate; with an in situ doped semiconductor material, epitaxially growing a source and drain region within the source and drain cavity; performing an amorphization ion implantation process by implanting an amorphization ion material into the source and drain region; forming a capping material layer above the NMOS transistor device; with the capping material layer in position, performing a stress forming anneal process to thereby form stacking faults in the source and drain region; and removing the capping material layer.
Abstract:
A semiconductor structure includes a dielectric layer, a silicidable metal layer and an undoped filler material layer are used to create an anti-efuse device. The anti-efuse device may be situated in a dielectric layer of an interconnect structure for a semiconductor device or may be planar. Where part of an interconnect structure, the anti-efuse device may be realized by causing a current to flow therethrough while applying local heating. Where planar, the filler material may be situated between extensions of metal pads and metal atoms caused to move from the extensions to the filler material layer using a current flow and local heating.
Abstract:
A three-dimensional transistor includes a channel with a center portion (forked channel) or side portions (narrow channel) removed, or fins without shaping, after removal of the dummy gate and before a replacement metal gate is formed.
Abstract:
Devices including stacking faults in sources, or sources and drains, of TFETs are disclosed to improve tunneling efficiency. Embodiments may include a tunneling field-effect transistor comprising a substrate; a source and a drain within the substrate; a gate between the source and the drain; and a stacking fault within the source.