Abstract:
A method for controlling valve timing of an engine includes: classifying control regions depending on an engine speed and an engine load, and applying a maximum duration to an intake valve and controlling a valve overlap in the first control region; advancing an intake valve closing (IVC) timing and applying the maximum duration to the exhaust valve in the second control region; advancing both the IVC timing and an exhaust valve closing (EVC) timing in the third control region; fixing an exhaust valve opening (EVO) timing and approaching the EVC timing to a top dead center (TDC) in the fourth control region; controlling a wide open throttle valve (WOT) and retarding the EVO timing in the fifth control region; and controlling the WOT, advancing the EVO timing, and approaching the EVC timing to the TDC in the sixth control region.
Abstract:
A method for controlling valve timing is provided for an engine including continuous variable duration (CVVD) device disposed on both intake valve and exhaust valve sides respectively. The method may include: classifying control regions into first, second, third, fourth, and fifth control regions based on engine load and speed; applying a maximum duration to an intake valve and controlling a valve overlap in a first control region, applying the maximum duration to the intake valve and exhaust valve in the second control region; controlling a manifold absolute pressure (MAP) of an intake manifold to be maintained consistently in the third control region; controlling a throttle valve to be fully opened, advancing an intake valve closing (IVC) timing, and controlling an exhaust valve closing (EVC) timing to after top dead center in the fourth control region; and controlling a wide open throttle valve (WOT) and retarding the intake valve closing in the fifth control region.
Abstract:
A method for controlling valve timing is provided for an engine including a continuous variable valve duration device disposed on an intake valve side, and a continuous variable valve duration device and continuous variable valve timing device disposed on an exhaust valve side. The method includes: classifying first, second, third, fourth, and fifth control regions depending on an engine speed and an engine load; applying a maximum duration to an intake valve and controlling a valve overlap in the first control region; applying the maximum duration to the intake valve and exhaust valve in the second control region; controlling a manifold absolute pressure (MAP) of an intake manifold to be maintained consistently in the third control region; controlling a wide open throttle valve (WOT) and retarding an exhaust valve opening (EVO) timing in the fourth control region; and controlling the WOT and retarding an intake valve closing (IVC) timing in the fifth control region.
Abstract:
A continuous variable valve duration apparatus may include: a camshaft; first and second cam portions on which a cam is formed respectively; first and second inner brackets transmitting rotation of the camshaft to the first and second cam portions respectively; a slider housing in which the first and the second inner brackets are rotatably inserted; first and second guiding portions formed on the slider housing; a control shaft parallel to the camshaft; a control rod eccentrically formed on the control shaft; a guide head on which a head guiding portion and a head hole are formed; a cam cap supporting the control shaft; a cam cap guiding portion mounted to the cam cap; and a control portion selectively rotating the control shaft such that the slider housing is moved along the cam cap guiding portion.
Abstract:
A continuous variable valve duration apparatus may include: a camshaft; first and second cam portions on which a cam is formed respectively, to which the camshaft is inserted and of which relative phase angles with respect to the camshaft are variable; first and second inner brackets transmitting rotation of the camshaft to the first and second cam portions respectively; a slider housing in which the first and second inner brackets are rotatably inserted, and on which a control slot is formed; a cam cap rotatably supporting the first and the second cam portions and to which the slider housing is slidably mounted; a control shaft which is parallel to the camshaft and on which a control rod is eccentrically formed; an eccentric plate rotatably connected to the control rod and rotatably inserted into the control slot; and a control portion selectively rotating the control shaft.
Abstract:
A continuous variable valve duration apparatus may include camshaft, first and second cam portions of cam is formed thereto respectively, of which the camshaft is inserted thereto and of which relative phase angles with respect to the camshaft are variable, first and second inner brackets transmitting rotation of the camshaft to the first and second cam portions respectively, first and second slider housings of which the first and second inner brackets are rotatably inserted thereto and of which relative position with respect to the camshaft are variable, cam cap rotatably supporting the first and second cam portions respectively and of which each slider housing is slidably mounted thereto, control shaft disposed parallel to the camshaft and engaged with the first and second slider housings for selectively moving the first and second slider housings and a control portion selectively rotating the control shaft for changing positions of the inner brackets.
Abstract:
A continuous variable valve duration system may include a camshaft, a first cam portion including a first cam, into which the camshaft is inserted and of which a relative phase angle of the first cam with respect to the camshaft is variable, a rocker shaft disposed parallel to the camshaft, a first rocker arm rotatably disposed to the rocker shaft of which a first end contacts with the first cam and a second end is connected to a first valve, an inner bracket to transmit rotation of the camshaft to the first cam portion, a slider housing into which the inner bracket is rotatably inserted, on which a control hole is formed and on which a guide portion is formed for guiding movement of the slider housing, an eccentric shaft inserted into the control hole, and a control portion to selectively rotate the eccentric shaft.
Abstract:
A continuously variable valve lift apparatus may include a camshaft, a cam portion on which a cam is formed and to which the camshaft is inserted, a slider housing to which the cam portion is rotatably inserted and is movable with respect to the camshaft, a control portion selectively changing the position of the slider housing, an output portion rotatable around a pivot shaft and to which a valve shoe is formed. The valve shoe drives a valve unit.
Abstract:
A continuous variable valve duration apparatus may include a camshaft, a first cam portion and a second cam portion of which a cam is formed thereto respectively, of which the camshaft is inserted thereto, of which relative phase angles with respect to the camshaft are variable, and the first and second cam portions disposed on one cylinder and the next cylinder respectively, a first inner bracket and a second inner bracket transmitting rotation of the camshaft to the first and second cam portions respectively, a slider housing of which the first and second inner brackets are rotatably inserted thereto and of which relative position with respect to the camshaft is variable and a control portion selectively changing the relative position of the slider housing.
Abstract:
A continuous variable valve duration apparatus includes a camshaft, a plurality of wheels mounted to the camshaft, and a wheel pin, a plurality of cam portions of which a cam and a cam pin are formed thereto respectively, of which the camshaft is inserted thereto, and of which relative phase angle with respect to the camshaft is variable a plurality of inner brackets including a first pin guide hole and a second pin guide hole and a wheel pin connected to the wheel respectively and a cam pin connected to the cam respectively are slidably inserted into the first pin guide hole and the second pin guide hole respectively, a plurality of a slider housings of which the each inner bracket is rotatably inserted thereto respectively, and rotatably configured around a hinge hole formed a side of a cam cap and a control portion selectively moving the slider housings.