Abstract:
A sensor device includes a sensor array in which infrared sensors are arrayed and a detection circuit connected to the output signal line of the sensor array. The detection circuit includes a capacitor having a charging circuit which is selectively driven, a sense amplifier circuit which detects and amplifies a change in sensor current flowing to the output signal line, a current-to-voltage conversion circuit which converts the output current from the sense amplifier circuit into a voltage, a discharging circuit which is controlled by the output voltage of the current-to-voltage conversion circuit to discharge the capacitor, and an output circuit which outputs the terminal voltage of the capacitor.
Abstract:
An opto-acoustoelectric device encompasses a diaphragm having a diffraction grating, the diaphragm is susceptible to a vibration driven by an external force; a light source oriented to irradiate the diffraction grating; and a photo detector configured to detect the light diffracted by the diffraction grating and to convert the detected light into an electric signal. The electric signal corresponds to a displacement of the vibration in the diaphragm.
Abstract:
A semiconductor device includes a first semiconductor element and a second semiconductor element, wherein the first semiconductor element of trench structure and the control circuit including the second semiconductor element such as a TFT or a bipolar transistor can be easily integrated by making the device structure such that the source layer of the buried gate electrode of the first semiconductor element and part of the second semiconductor element, such as the emitter or collector region, can be simultaneously formed.
Abstract:
A high breakdown voltage semiconductor device comprising a first base region of a first conductivity type, a second base region of a second conductivity type, which is formed in a surface region of the first base region, a first gate insulation film formed on an inner wall of a first LOCOS groove formed passing through the second base region to reach the first base region, a first gate electrode formed on the first gate insulation film, a first source region of a first conductivity type, which is formed in a surface region of the second base region around the first LOCOS groove in such a manner as to contact with the first gate insulating film, a first drain region formed in a surface region of the first base region in such a manner as to be spaced apart from the second base region, a source electrode formed on the first source region and on the second base region, and a drain electrode formed on the first drain region.
Abstract:
Disclosed is a high breakdown voltage semiconductor device comprising a semiconductor substrate, an active layer consisting of a high resistivity semiconductor layer of a first conductivity type formed on the substrate with an insulating layer interposed therebetween, a first impurity region of the first conductivity type formed within the active layer, a second impurity region of a second conductivity type formed within the active layer, a third impurity region of the second conductivity type formed within the second impurity region and having a high impurity concentration, a first electrode being in ohmic contact with the first impurity region and the fourth impurity region, and a second electrode being in Schottky contact with the second impurity region and in ohmic contact with the third impurity region.
Abstract:
The present invention provides a semiconductor device having high-speed switching characteristics and high output characteristics. More specifically, the semiconductor device includes a second conductivity type drain layer having a low impurity concentration, for decreasing the efficiency of injecting holes, and a second conductivity type contact layer having a high impurity concentration, for avoiding an increase in contact resistance. With this structure, an increase in ON-state voltage can be avoided while improving the switching rate by the second conductivity type drain layer. That is, the present invention achieves high-speed switching characteristics and high output characteristics at the same time.
Abstract:
A high-breakdown-voltage semiconductor device includes a high-resistance semiconductor layer, a drift layer of the first conductivity type selectively formed in the surface of the high-resistance semiconductor layer, a drain layer formed in the surface of the drift layer of the first conductivity type, base layers of the second conductivity type selectively formed in the surface of the high-resistance semiconductor layer, a plurality of island-shaped source layers of the first conductivity type formed in the surfaces of the base layers of the second conductivity type, a gate electrode formed on the base layers of the second conductivity type between the source layers of the first conductivity type and the drift layer of the first conductivity type and between adjacent source layers of the first conductivity type via a gate insulating film, a drain electrode which contacts the drain layer, and source electrodes which contact both the source layers of the first conductivity type and the base layers of the second conductivity type.
Abstract:
A high breakdown voltage semiconductor device includes a semiconductor substrate, an insulating layer formed on the semiconductor substrate, an active layer formed on the insulating layer and made of a high resistance semiconductor of a first conductivity type, a first impurity region of the first conductivity type formed in the active layer, and a second impurity region of a second conductivity type formed in the active layer and spaced apart from the first impurity region by a predetermined distance. The first impurity region is formed of diffusion layers. The diffusion layers are superimposed one upon another and differ in diffusion depth or diffusion window width, or both.
Abstract:
According to one embodiment, a solid state imaging device includes a sensor substrate having a plurality of pixels formed on an upper face, a microlens array substrate having a plurality of microlenses formed and a connection post with one end bonded to a region between the microlenses on the microlens array substrate and with the other end bonded to the upper face.
Abstract:
According to an embodiment, a solid-state imaging device includes: an imaging device including an imaging area including a plurality of pixel blocks each of which includes a plurality of pixels; an image formation lens forming an image on an image formation plane by using light from a subject; an aperture unit including a plurality of aperture elements provided to associate with the plurality of pixel blocks, each of the aperture elements having an aperture portion and a shield portion, light from the image formation lens being filtered by each aperture element; a microlens array including a plurality of microlenses provided to associate with the plurality of aperture elements, each of the microlenses forming an image in the imaging area by using light filtered by an associated aperture element; and a signal processing circuit configured to process a signal of an image taken in the imaging area and estimates a distance to the subject.