摘要:
Provided is a power converter 3 that directly converts polyphase AC power to AC power. A converter circuit has a plurality of first switching elements 311, 313 and 315 and a plurality of second switching elements 312, 314 and 316, both of which are connected to each phase R, S or T of the polyphase AC power to enable switching for turning on current-carrying bidirectionally. Condensers 821 to 826 are provided between phases. Input terminals of the first switching elements and those of the second switching elements are arranged to form respective lines. Some of the plurality of condensers 821 and 822 are arranged to be angled relative to the arrangement direction of the terminals. The wiring distance between the condensers and the switching elements can be shortened.
摘要:
An electric power conversion device comprises a conversion circuit having bi-directionally switchable plural pairs of switching elements connected to respective phases and converting an inputted AC power into an AC electric power. A first switching time is calculated using detected voltages detected by voltage sensors and an output command value. A second switching time is calculated using a carrier and the calculated first switching time. The second switching time is such that, in one period of the alternating current electric power outputted from the conversion circuit, the second switching time included in a first half period of the one period is equal to the second switching time included in a second half period of the one period.
摘要:
A power module (2) includes a first high-side main-circuit MOSFET (21) and a second low-side main-circuit MOSFET (22) connected in series thereto. The series circuit of the MOSFETs (21, 22) is connected in parallel to a power source (4). A first short-circuit MOSFET (25) is connected between the gate and the source of the first main-circuit MOSFET (21). A second short-circuit MOSFET (26) is connected between the gate and the source of the second main-circuit MOSFET (22).
摘要:
Provided is a power converter 3 that directly converts polyphase AC power to AC power. A converter circuit has a plurality of first switching elements 311, 313 and 315 that are connected to each phase R, S or T of the polyphase AC power to enable switching for turning on current-carrying bidirectionally, and a plurality of second switching elements 312, 314 and 316 that are connected to each phase to enable switching for turning on current-carrying bidirectionally. The converter circuit comprises input lines R, S and T connected to each input terminal, and output lines P and N connected to each output terminal. Parts of wiring 347 and 348 of protection circuits 32 are located between output lines P and N. The wiring distance between each protection circuit 32 and the corresponding switching element can be shortened.
摘要:
There is disclosed a power conversion apparatus 3 for converting polyphase ac power directly to ac power. A conversion circuit includes a plurality of first switching devices 311, 313, 315 and a plurality of second switching devices 312, 314, 316 connected, respectively, with the phases R, S, T of the polyphase ac power, and configured to enable electrical switching operation in both directions. Output lines 331, 332 formed by a pair of busbars are connected with the conversion circuit. The first switching devices and the second switching devices are so arranged that output terminals are arranged in a row. The output lines 331, 332 are connected with the output terminals and drawn out rectilinearly in one direction.
摘要:
A semiconductor device includes: a first output unit configured to output a first phase; a second output unit configured to output a second phase different from the first phase, the second output unit being disposed to be stacked on the first output unit; and a controller configured to control the output units.
摘要:
A power module includes a substrate having first and second main substrate surfaces; a semiconductor device disposed on the first main substrate surface, and having a first main surface on which a first main electrode is formed, and a second main surface on which a second main electrode in contact with the first main substrate surface is formed; a heat conduction portion disposed on the first main substrate surface in a residual region of a region on which the semiconductor device is disposed; and an upper cooling portion disposed on the heat conduction portion.
摘要:
An insulating adhesive film and an anisotropically electroconductive adhesive film satisfying low-temperature curability, high adhesion and high reliability are provided. An anisotropically electroconductive adhesive film of the present invention is so configured that electroconductive particles 7 are dispersed in an insulating adhesive resin 6, comprising as main components: a radical polymerizable resin component having an unsaturated double bond; a resin component having no unsaturated double bond; a phosphoric acid-containing resin component; and a radical polymerization initiator.
摘要:
A silicon single crystal rod (24) is pulled from a silicon melt (13) made molten by a heater (17), and a change in diameter of the silicon single crystal rod every predetermined time is fed back to a pulling speed of the silicon single crystal rod and a temperature of the heater, thereby controlling a diameter of the silicon single crystal rod. A PID control in which a PID constant is changed on a plurality of stages is applied to a method which controls the pulling speed of the silicon single crystal rod so that the silicon single crystal rod has a target diameter and a method which controls a heater temperature so that the silicon single crystal rod has the target temperature. A set pulling speed for the silicon single crystal rod is set so that V/G becomes constant, and an actual pulling speed is accurately controlled so as to match with the set pulling speed, thereby suppressing a fluctuation in diameter of the single crystal rod.
摘要:
Screen data is generated by a screen generating processor (74) of a control host computer (7) and transmitted to a programmable display apparatus (5). In accordance with the screen data, the programmable display apparatus (5) inquires a PLC (3) or the like about a state of a device (21), so as to update the display or transmit a control instruction depending on an input result. On the other hand, a control host computer (7) has a public server section (77) to transmit to a client apparatus (9) via the Internet an applet, which is generated by a compiler (76) compiling the screen data. The client apparatus (9) executes the applet to transmit to the public server section (77) an or the control instruction inquiry similar to those the programmable display apparatus (5) makes. In this way, the display is updated in accordance with a response. This realizes a control system, which allows a display content of the programmable display apparatus (5) to be remotely checked from a remote area remote from the programmable display apparatus (5), without newly generating a display screen.