Abstract:
In accordance with certain described implementations, a voltage controlled oscillator (VCO) includes a VCO coarse tuning bank having multiple coarse tuning bank bits. Each coarse tuning bank bit has an associated bit capacitance. The bit capacitances of the coarse tuning bank bits may be selectively engaged using, for example, a single switching transistor for each coarse tuning bank bit.
Abstract:
A method and apparatus are provided to generate calibration signals to multiple stages in a receiver channel. The multiple stages are calibrated using multiple calibration circuits, where a controller controls each calibration circuit. The controller is coupled to the output of the final stage in the receiver channel through a single comparison unit. The output from the single comparison unit is used by the controller to calibrate each of the multiple stages.
Abstract:
An apparatus including a sampling circuit to generate sampling clocks from a local clock and the sampling clocks to sample incoming data and a quarter clock, a phase detector to detect a phase difference between a data transition in sampled data and the local clock, and a delay line adapted to delay the sampled data by the detected phase difference.
Abstract:
An apparatus comprising three sampling circuits to sample incoming data and a quarter clock. A clock generation unit is included to generate at least three sampling clocks from a local clock. Each of the three sampling clocks are configured to sample the incoming data and the quarter clock. A phase detector is also included to detect a phase difference between the quarter clock and the local clock and to generate a recovered quarter clock. A delay line is further included to delay the sampled incoming data and the recovered quarter clock by the detected phase difference.
Abstract:
A way of converting digital signals to analog signals is provided. An apparatus is provided that comprises a resistive-ladder array to convert a first portion of a digital input signal to a first analog output signal. The apparatus further includes a current-mode array to convert a second portion of the digital input signal to a second analog output signal.
Abstract:
Embodiments are generally directed to smart impedance matching for high-speed I/O. In some embodiments, a circuit includes an impedance sensing block; a finite state machine to provide impedance tuning for a driver; and a control block, the control block to provide a feedback loop to check and tune impedance of the driver. The impedance sensing block is to sample an output voltage of the driver to determine whether the impedance of the driver is greater than or less than an impedance of the channel; and the finite state machine is to produce a signal to decrease or increase the impedance of the driver based on the determination whether the impedance of the driver is greater than or less than the impedance of the channel.
Abstract:
Described herein is a low power high-speed digital receiver. The apparatus of the receiver comprises: a sampling unit operable to sample a differential input signal and to boost input signal gain, the sampling unit to generate a sampled differential signal with boosted input signal gain; and a differential amplifier to amplify the sampled differential signal with boosted input signal gain, the differential amplifier to generate a differential amplified signal.
Abstract:
Described herein is a low power squelch circuit which comprises a clock generation unit to generate first and second phases of a clock signal; a sampling unit to sample a differential input signal according to the first and second phases of the clock signal, the sampler to generate a sampled differential signal; and a differential amplifier to amplify the sampled differential signal.
Abstract:
Described herein is an apparatus, method and system corresponding to relate to a low power digital phase interpolator (PI). The apparatus comprises: a digital mixer unit to generate phase signals from a series of input signals, the phase signals having phases which are digitally controlled; a poly-phase filter, coupled to the digital mixer unit, to generate a filtered signal by reducing phase error in the phase signals; and an output buffer, coupled to the poly-phase filter, to generate an output signal by buffering the filtered signal. The low power digital PI consumes less power compared to traditional current-mode PIs operating on the same power supply levels because the digital PI is independent of any bias circuit which are needed for current mode PIs.