摘要:
A semiconductor device comprises a semiconductor substrate, a lateral semiconductor diode, a field insulation structure, and a polysilicon resistor. The diode is formed in a surface region of the semiconductor substrate, and includes a cathode electrode and an anode electrode. The field insulation structure is disposed between the cathode and anode electrodes. The polysilicon resistor is formed over the field insulation structure, and between the cathode and anode electrodes. The polysilicon resistor is electrically connected to the cathode electrode, and electrically insulated from the anode electrode.
摘要:
The present invention discloses a laterally double-diffused metal oxide semiconductor transistor (LDMOS) and a method for fabricating the same. The LDMOS includes a substrate, a first well, a drain, a second well and a source. The substrate includes a first conductive dopant. The first well includes a second conductive dopant and formed in a part of the substrate, and the drain is located in the first well. The second well includes the first conductive dopant and formed in another part of the substrate, and the source located in the second well. The source includes a lightly doped region and a heavily doped region extending downwardly from a top surface of the substrate. The depth of the lightly doped region is more than the depth of the heavily doped region.
摘要:
A semiconductor structure and a method for operating the same are provided. The semiconductor structure includes a substrate, a first doped region, a second doped region, a third doped region, a first trench structure and a second gate structure. The first doped region is in the substrate. The first doped region has a first conductivity type. The second doped region is in the first doped region. The second doped region has a second conductivity type opposite to the first conductivity type. The third doped region having the first conductivity type is in the second doped region. The first trench structure has a first gate structure. The first gate structure and the second gate structure are respectively on different sides of the second doped region.
摘要:
An improved MOS device is provided whereby the p-top layer is defined by a series of discretely placed p type top diffusion regions. The invention also provides methods for fabricating the MOS device of the invention.
摘要:
A semiconductor structure and a manufacturing method for the same are provided. The semiconductor structure includes a first doped well, a first doped electrode, a second doped electrode, doped strips and a doped top region. The doped strips are on the first doped well between the first doped electrode and the second doped electrode. The doped strips are separated from each other. The doped top region is on the doped strips and extended on the first doped well between the doped strips. The first doped well and the doped top region have a first conductivity type. The doped strips have a second conductivity type opposite to the first conductivity type.
摘要:
A high-voltage metal-oxide-semiconductor (HVMOS) device may include a source, a drain, a gate positioned proximate to the source, a drift region disposed substantially between the drain and a region of the gate and the source, and a self shielding region disposed proximate to the drain. A corresponding method is also provided.
摘要:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a bulk, a gate, a source, a drain and a bulk contact region. The gate is on the bulk. The source and the drain are in the bulk on opposing sides of the gate respectively. The bulk contact region is only in a region of the bulk adjacent to the source. The bulk contact region is electrically connected to the bulk.
摘要:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a bulk, a gate, a source, a drain and a bulk contact region. The gate is on the bulk. The source and the drain are in the bulk on opposing sides of the gate respectively. The bulk contact region is only in a region of the bulk adjacent to the source. The bulk contact region is electrically connected to the bulk.
摘要:
A semiconductor device and method of forming the semiconductor device are disclosed, where the semiconductor device includes additional implant regions in the source and drain areas of the device for improving Ron-sp and BVD characteristics of the device. The device includes a gate electrode formed over a channel region that separates first and second implant regions in the device substrate. The first implant region has a first conductivity type, and the second implant region has a second conductivity type. A source diffusion region is formed in the first implant region, and a drain diffusion region is formed in the second implant region.
摘要:
A semiconductor device and method of forming the semiconductor device are disclosed, where the semiconductor device includes additional implant regions in the source and drain areas of the device for improving Ron-sp and BVD characteristics of the device. The device includes a gate electrode formed over a channel region that separates first and second implant regions in the device substrate. The first implant region has a first conductivity type, and the second implant region has a second conductivity type. A source diffusion region is formed in the first implant region, and a drain diffusion region is formed in the second implant region.