Abstract:
A process for rejuvenating an at least partially spent catalyst resulting from a hydrodesulfurization process of a sulfur-containing olefinic gasoline cut, where the at least partially spent catalyst result is from a fresh catalyst a metal from group VIII, a metal from group VIb, and an oxide support, where the process includes
a) regenerating the at least partially spent catalyst in an oxygen-containing gas stream at a temperature between 350° C. and 550° C., b) the regenerated catalyst is brought into contact with an impregnation solution containing a compound containing a metal from group VIb, the molar ratio of the metal from group VIb added per metal from group VIb already present in the regenerated catalyst being between 0.15 and 2.5 mol/mol, c) a drying stage is carried out at a temperature of less than 200° C., and the use of the rejuvenated catalyst in a hydrodesulfurization process.
Abstract:
The invention describes a process for the photocatalytic reduction of carbon dioxide carried out in the liquid phase and/or in the gas phase under irradiation employing a photocatalyst of microporous crystalline metal sulfide type, said process being carried out by bringing a charge containing the CO2 and at least one sacrificial compound into contact with said photocatalyst, then by irradiating the photocatalyst by at least one irradiation source producing at least one wavelength lower than the bandgap width of said photocatalyst, so as to reduce the CO2 and to oxidize the sacrificial compound, so as to produce an effluent containing, at least in part, C1 or more carbon-based molecules other than CO2.
Abstract:
The invention describes a process for the capture of organometallic impurities in a hydrocarbon feedstock of gasoline type containing olefins and sulfur, in which a capture body is brought into contact with the feedstock to be treated and a stream of hydrogen, said capture body comprises an active phase based on nickel oxide particles with a size of less than or equal to 15 nm, said active phase not comprising other metal elements of Group VIb or Group VIII, which are deposited on a porous support chosen from the group consisting of aluminas, silica, silicas/aluminas, or also titanium or magnesium oxides, used alone or as a mixture with alumina or silica/alumina.
Abstract:
A process reducing sulfides R1-S-R2, with R1 and R2 methyl or ethyl, in a gasoline containing diolefins, mono-olefins and sulphur: A) contacting gasoline in mixture with a light gasoline cut recycled from C) and hydrogen in a reactor with catalyst A at least one VIb metal and at least one non noble group VIII metal on a support, producing effluent having diolefins and sulfides R1-S-R2, with R1 and R2 methyl or ethyl radicals lower than that that of the starting gasoline; B) the effluent from A) is sent into a fractionating column separating at the top a light gasoline cut containing hydrocarbons having less than 6 carbon atoms per molecule and at the bottom a heavy gasoline cut containing hydrocarbons having 6 and more than 6 carbon atoms per molecule; C) recycling a part of the light gasoline from B) to the reactor of A) with a recycle ratio 0.1 to 0.7.
Abstract:
The present invention describes a process for the production of high-purity paraxylene from a xylenes cut capable of containing ethylbenzene and C9 compounds, said process using two simulated moving bed separation units operating in series and two isomerization units.
Abstract:
This invention relates to a process for treatment of a gasoline that comprises diolefins, olefins and sulfur-containing compounds including mercaptans, consisting of a stage for treatment of the gasoline in a distillation column (2) comprising at least one reaction zone (3) including at least one catalyst that makes it possible to carry out the addition of mercaptans to the olefins that are contained in the gasoline that distills toward the top of the catalytic column.
Abstract:
The present invention relates to zeolite adsorbents based on agglomerated crystals of zeolite EMT comprising barium and/or potassium. These adsorbents find applications in the separation of aromatic C8 isomer fractions, especially of xylenes, in the separation of substituted toluene isomers, such as nitrotoluene, diethyltoluene and toluenediamine, and in the separation of cresols, and in the separation of polyhydric alcohols, such as sugars.
Abstract:
A process for the concomitant production of at least two hydrocarbon cuts with low sulphur contents from a mixture of hydrocarbons having a total sulphur content in the range 30 to 10000 ppm by weight, by a) hydrodesulphurization in the presence of hydrogen and a hydrodesulphurization catalyst; b) separating hydrogen sulphide from the partially desulphurized effluent obtained from a); c) hydrodesulphurization of the partially desulphurized mixture obtained from b) in the presence of hydrogen and a hydrodesulphurization catalyst, the temperature of the second hydrodesulphurization being higher than that of the first hydrodesulphurization; d) fractionating the desulphurized mixture obtained in c) into at least two desulphurized hydrocarbon cuts.
Abstract:
This invention relates to a process for treatment of a gasoline that comprises diolefins, olefins and sulfur-containing compounds including mercaptans, consisting of a stage for treatment of the gasoline in a distillation column (2) comprising at least one reaction zone (3) including at least one catalyst that makes it possible to carry out the addition of mercaptans to the olefins that are contained in the gasoline that distills toward the top of the catalytic column.
Abstract:
A process for treatment of gasoline comprising diolefins, olefins and sulphur-containing compounds including mercaptans. The process comprises: a) demercaptanization by addition of a portion of the mercaptans onto the olefins by bringing gasoline into contact with a first catalyst; b) separating the gasoline obtained from a) into a light gasoline cut and a heavy gasoline cut; c) introducing a stream of hydrogen and the second heavy gasoline cut obtained from b) into a distillation column comprising a reaction zone including a second catalyst in the sulphide form comprising a second support, a metal from group VIII and a metal from group VIb, to decompose the sulphur-containing compounds to form H2S; d) evacuating at a point located above the reaction zone at least one final light gasoline fraction comprising H2S, and at a point located below the reaction zone a desulphurized heavy gasoline fraction from the catalytic distillation column.