Abstract:
A method is presented for forming a semiconductor structure. The method includes depositing an insulating layer over a semiconductor substrate, etching the insulating layer to form trenches for receiving copper (Cu), selectively recessing the Cu at one or more of the trenches corresponding to circuit locations requiring electromigration (EM) short-length, and forming self-aligned conducting caps over the one or more trenches where the Cu has been selectively recessed. The conducting caps can be tantalum nitride (TaN) caps. The method further includes forming a via extending into each of the trenches for receiving Cu. Additionally, the via for trenches including recessed Cu extends to the self-aligned conducting cap, whereas the via for trenches including non-recessed Cu extends to a top surface of the Cu.
Abstract:
A method of forming fully aligned vias in a semiconductor device includes forming an Mx level interconnect line embedded in an Mx interlevel dielectric (ILD). The Mx level interconnect is recessed below the Mx interlevel dielectric or a dielectric is selectively deposited on the Mx interlevel dielectric. The method also includes laterally etching the exposed upper portion of the Mx interlevel dielectric bounding the recess or laterally etching the selectively deposited dielectric. A dielectric cap layer and an Mx+1 level interlevel dielectric is deposited on top of the Mx interlevel dielectric, and a via opening is formed.
Abstract:
A selective wet etching process is used, prior to air gap opening formation, to remove a sacrificial nitride layer from over a first region of an interconnect dielectric material containing a plurality of first conductive metal structures utilizing a titanium nitride hard mask portion located over a second region of the interconnect dielectric material as an etch mask. The titanium nitride hard mask portion located over the second region of the interconnect dielectric material is thereafter removed, again prior to air gap opening formation, utilizing another wet etch process. The wet etching processes are used instead of reactive ion etching.
Abstract:
After forming a manganese (Mn)-containing cap layer over interconnects embedded in an interlevel dielectric (ILD) layer, a lithographic stack is formed over the Mn-containing cap layer. The lithographic stack is subsequently patterned to expose a portion of the Mn-containing cap layer that overlies a subset of the interconnects between which the air gaps are to be formed. A portion of the ILD layer located between the subset of the interconnects is damaged through the exposed portion of the Mn-containing cap layer. The damaged portion of the ILD layer is subsequently removed to form openings between the subset of the interconnects. The Mn-containing cap layer acts as a temporary protection layer preventing erosion of the underlying interconnects during the air gap formation.
Abstract:
Bottom barrier free interconnects are provided. In one aspect, an interconnect structure includes: metal lines embedded in a dielectric; an interlayer dielectric (ILD) disposed over the metal lines; interconnects formed in the ILD on top of the metal lines; a barrier layer separating the interconnects from the ILD, wherein the barrier layer is absent in between the interconnects and the metal lines; and a selective capping layer disposed on the interconnects.
Abstract:
Techniques to enable bottom barrier free interconnects without voids. In one aspect, a method of forming interconnects includes: forming metal lines embedded in a dielectric; depositing a sacrificial dielectric over the metal lines; patterning vias and trenches in the sacrificial dielectric down to the metal lines, with the trenches positioned over the vias; lining the vias and trenches with a barrier layer; depositing a conductor into the vias and trenches over the barrier layer to form the interconnects; forming a selective capping layer on the interconnects; removing the sacrificial dielectric in its entirety; and depositing an interlayer dielectric (ILD) to replace the sacrificial dielectric. An interconnect structure is also provided.
Abstract:
Method and apparatus for completing atomic instructions in a microprocessor may be provided by identifying from a program-ordered Instruction Completion Table (ICT) a last entry in a completion window of instructions for completion in a current clock cycle of a processor; in response to determining that the last entry includes an atomic instruction that straddles the completion window: excluding the last entry from completion during the current clock cycle; completing instructions in the completion window for the current clock cycle; and shifting the completion window to include the last entry and a next entry adjacent to the last entry in the ICT in a next clock cycle.
Abstract:
Method and apparatus for a completion mechanism for a microprocessor are provided by marking entries in a section of an Instruction Completion Table (ICT) as ready to complete using corresponding Ready to Complete (RTC) status bits; determining a tail pointer indicating a start of the entries in the ICT that are ready for completion in a current clock cycle; performing a counting leading ones on an RTC vector that organizes the RTC status bits according to a program order for completing the entries to determine a count leading ones pointer that indicates an end of the entries in the ICT that are ready for completion in the current clock cycle; completing instructions included in the entries between the tail pointer and the count leading ones pointer in one clock cycle; and updating the tail pointer to a value of the count leading ones pointer for a subsequent clock cycle.
Abstract:
A method for manufacturing a semiconductor device includes forming a first interconnect level having a conductive metal layer formed in a first dielectric layer. In the method, a cap layer is formed on the first interconnect level, and a second interconnect level including a second dielectric layer is formed on the cap layer. The method also includes forming a third interconnect level including a third dielectric layer on the second interconnect level. An opening is formed through the second and third interconnect levels and over the conductive metal layer. Sides of the opening are lined with a spacer material, and a portion of the cap layer at a bottom of the opening is removed from a top surface of the conductive metal layer. The spacer material is removed from the opening, and a conductive material layer is deposited in the opening on the conductive metal layer.
Abstract:
A method for manufacturing a semiconductor device includes forming a first interconnect level having a conductive metal layer formed in a first dielectric layer. In the method, a cap layer is formed on the first interconnect level, and a second interconnect level including a second dielectric layer is formed on the cap layer. The method also includes forming a third interconnect level including a third dielectric layer on the second interconnect level. An opening is formed through the second and third interconnect levels and over the conductive metal layer. Sides of the opening are lined with a spacer material, and a portion of the cap layer at a bottom of the opening is removed from a top surface of the conductive metal layer. The spacer material is removed from the opening, and a conductive material layer is deposited in the opening on the conductive metal layer.