摘要:
A method for fabricating fin field effect transistors comprises creating a pattern of self-aligned small cavities for P-type material growth using at least two hard mask layers, generating a pre-defined isolation area around each small cavity using a vertical spacer, selectively removing N-type material from the self-aligned small cavities, and growing P-type material in the small cavities. The P-type material may be silicon germanium (SiGe) and the N-type material may be tensile Silicon (t-Si). The pattern of self-aligned small cavities for P-type material growth is created by depositing two hard mask materials over a starting substrate wafer, selectively depositing photo resist over a plurality N-type areas, reactive ion etching to remove the second hard mask layer material over areas not covered by photo resist to create gaps in second hard mask layer, and removing the photo resist to expose the second hard mask material in the N-type areas.
摘要:
Embodiments are directed to a method of forming a semiconductor device and resulting structures having an air spacer between a gate and a contact by forming a gate on a substrate and over a channel region of a semiconductor fin. A contact is formed on a doped region of the substrate such that a space between the contact and the gate defines a trench. A first dielectric layer is formed over the gate and the contact such that the first dielectric layer partially fills the trench. A second dielectric layer is formed over the first dielectric layer such that an air spacer forms in the trench between the gate and the contact.
摘要:
A semiconductor device includes a metal-containing structure such as a copper-containing wire or plug and a composite capping layer formed over the metal-containing structure. The composite capping layer includes a manganese-containing layer disposed over the metal-containing structure, a silicon-containing low-k dielectric layer disposed over the manganese-containing layer, and an intermediate layer between the manganese-containing layer and the silicon-containing low-k dielectric layer. The intermediate layer is the reaction product of the manganese-containing layer and the silicon-containing low-k dielectric layer.
摘要:
An electrical device including an opening in a low-k dielectric material, and a copper including structure present within the opening for transmitting electrical current. A liner is present between the opening and the copper including structure. The liner includes a superlattice structure comprised of a metal oxide layer, a metal layer present on the metal oxide layer, and a metal nitride layer that is present on the metal layer. A first layer of the superlattice structure that is in direct contact with the low-k dielectric material is one of said metal oxide layer and a final layer of the superlattice structure that is in direct contact with the copper including structure is one of the metal nitride layers.
摘要:
Embodiments are directed to a method of forming a semiconductor device and resulting structures having an air spacer between a gate and a contact by forming a gate on a substrate and over a channel region of a semiconductor fin. A contact is formed on a doped region of the substrate such that a space between the contact and the gate defines a trench. A first dielectric layer is formed over the gate and the contact such that the first dielectric layer partially fills the trench. A second dielectric layer is formed over the first dielectric layer such that an air spacer forms in the trench between the gate and the contact.
摘要:
Embodiments are directed to a method of forming a semiconductor device and resulting structures having an air spacer between a gate and a contact by forming a gate on a substrate and over a channel region of a semiconductor fin. A contact is formed on a doped region of the substrate such that a space between the contact and the gate defines a trench. A first dielectric layer is formed over the gate and the contact such that the first dielectric layer partially fills the trench. A second dielectric layer is formed over the first dielectric layer such that an air spacer forms in the trench between the gate and the contact.
摘要:
A semiconductor device includes a metal-containing structure such as a copper-containing wire or plug and a composite capping layer formed over the metal-containing structure. The composite capping layer includes a manganese-containing layer disposed over the metal-containing structure, a silicon-containing low-k dielectric layer disposed over the manganese-containing layer, and an intermediate layer between the manganese-containing layer and the silicon-containing low-k dielectric layer. The intermediate layer is the reaction product of the manganese-containing layer and the silicon-containing low-k dielectric layer.
摘要:
A deposition apparatus for depositing a material on a substrate is provided. The deposition apparatus has a processing chamber defining a processing space in which the substrate is arranged, an ultraviolet radiation assembly configured to emit ultraviolet radiation and a microwave radiation assembly configured to emit microwave radiation into an excitation space that can be the same as the processing space, and a gas feed assembly configured to feed a precursor gas into the processing space and a reactive gas into the excitation space. The ultraviolet radiation assembly and the microwave radiation assembly are operated in combination to excite the reactive gas in the excitation space. The material is deposited on the substrate from the reaction of the excited reactive gas and the precursor gas. A method for using the deposition apparatus to deposit a material on a substrate is provided.
摘要:
Multilayer dielectric structures are provided with graded composition. For example, a multilayer dielectric structure includes a stack of dielectric films, wherein the dielectric films include at least a first SiCNO (silicon carbon nitride oxide) film and a second SiCNO film. The first SiCNO film has a first composition profile of C, N, and O atoms. The second SiCNO film has a second composition profile of C, N, and O atoms, which is different from the first composition profile of C, N, and O atoms. The composition profiles of C, N and/or O atoms of the constituent dielectric films of the multilayer dielectric structure are customized to enhance or otherwise optimize one or more electrical and/or physical properties of the multilayer dielectric structure.
摘要:
Multilayer dielectric structures are provided having silicon nitride (SiN) and silicon oxynitride (SiNO) films for use as capping layers, liners, spacer barrier layers, and etch stop layers, and other components of semiconductor nano-devices. For example, a semiconductor structure includes a multilayer dielectric structure having multiple layers of dielectric material including one or more SiN layers and one or more SiNO layers. The layers of dielectric material in the multilayer dielectric structure have a thickness in a range of about 0.5 nanometers to about 3 nanometers.