Abstract:
An interconnect including an input couplable to a source, and an encoder coupled to the input. The encoder is configured to: group information that is received from the source via a same channel; size the grouped information to a common width; and apply protection to the sized grouped information.
Abstract:
The present disclosure relates to a security device, a system, and a method for securing a control apparatus. The security device includes a data security unit which is configured to secure data, data communication and information, and includes a first security component inside the data security unit to operate in a first operating mode, and at least one first monitoring unit to operate in a high-availability mode which, said first monitoring unit being configured to detect a fault present in the first security component. The high-availability mode is different from the first operating mode. The security device further includes a second security component which is configured to operate in the high-availability mode and to output a first response signal if a fault is detected by the first monitoring, where the high-availability mode is available independently from the first operating mode.
Abstract:
A memory protector is configured to evaluate access requests referring to a memory address space. The access requests comprise address parameters referring to addresses of the memory address space. The memory protector comprises an address evaluator, an address results combiner, and a data register. The address evaluator is configured to evaluate whether the address parameters refer to address ranges of a set of address ranges and is configured to provide results regarding the address ranges. The address results combiner is configured to combine results provided by the address evaluator depending on access protection groups to which the address ranges are mapped to. The memory protector is configured to provide access grant results based on combinations provided by the address results combiner. The data register is configured to store data concerning the set of address ranges and concerning a mapping of the address ranges to the access protection groups.
Abstract:
An interrupt interface of a central processing unit (CPU) comprises a bus with a plurality of interfaces to various components of the CPU. These components can include a memory that includes instructions to execute operations of a processor component, a plurality of virtual machines (VMs) and a virtual machine monitor (VMM)/hypervisor configured to execute the plurality of VMs. The processor can receive interrupt requests (interrupt) as service requests in parallel, which can be executed by the VMM or any one or more of the plurality of VMs to execute VM applications on a dedicated instance of a guest operating system for a task. The processor can further determine whether to grant an interrupt request to the VMM and the VMs based on predetermined criteria, including a current task priority, a pending interrupt priority, or an interrupt enable, associated with the current status of each of the component.
Abstract:
An interrupt interface of a central processing unit (CPU) comprises a bus with a plurality of interfaces to various components of the CPU. These components can include a memory that includes instructions to execute operations of a processor component, a plurality of virtual machines (VMs) and a virtual machine monitor (VMM)/hypervisor configured to execute the plurality of VMs. The processor can receive interrupt requests (interrupt) as service requests in parallel, which can be executed by the VMM or any one or more of the plurality of VMs to execute VM applications on a dedicated instance of a guest operating system for a task. The processor can further determine whether to grant an interrupt request to the VMM and the VMs based on predetermined criteria, including a current task priority, a pending interrupt priority, or an interrupt enable, associated with the current status of each of the component.
Abstract:
A system for a multiple chip architecture that enables different system on-chip (SoC) systems with varying compatibilities to interact as one SoC via a transparent interface. The system address maps of the single SoCs are configured so that each provide a system address map of the two SoCs without overlap or address re-mapping when connected to one another via the transparent interface. The transparent interface enables components related to safety/security and interrupt communication of a first and second SoC within the multiple chip system to transparently communicate and interact. The transparent interface can enable sources of both SoCs to be flexibly mapped to interrupt services providers on the first/second SoC within the multiple chip system.
Abstract:
The disclosure relates to systems and methods for defining a processor safety privilege level for controlling a distributed memory access protection system. More specifically, a safety hypervisor function for accessing a bus in a computer processing system includes a module, such as a Computer Processing Unit (CPU) or a Direct Memory Access (DMA) for accessing a system memory and a memory unit for storing a safety code, such as a Processor Status Word (PSW) or a configuration register (DMA (REG)). The module allocates the safety code to a processing transaction and the safety code is visible upon access of the bus by the module.
Abstract:
A service request interrupt router having Interrupt Control Units (ICUs); and an arbitration unit configured to be shared by the ICUs to arbitrate among Service Request Nodes (SRNs) that have respective service request interrupt signals and that are mapped to the ICUs, to determine for each of the ICUs which of the SRNs has a highest priority.
Abstract:
A bus system includes a functional unit to which a unit identifier is assigned, a memory module for storage of data that has a storage region, and a bus. The functional unit is connected to the memory module via the bus. The storage region is configured such that one or more multiple global authorized identifiers are assigned thereto, so that the functional unit only has reading or writing access to the storage region if the unit identifier assigned to the functional unit corresponds to one of the global authorized identifiers assigned to the storage region.
Abstract:
Some embodiments relate to a Direct Memory Access (DMA) controller. The DMA controller includes a set of transaction control registers to receive a sequence of transaction control sets that collectively describe a data transfer to be processed by the DMA controller. A bus controller reads and writes to memory while the DMA controller executes a first transaction control set to accomplish part of the data transfer described in the sequence of transaction control sets. An integrity checker determines an actual error detection code based on data or an address actually processed by the DMA controller during execution of the first transaction control set. The integrity checker also selectively flags an error based on whether the actual error detection code is the same as an expected error detection code contained in a second transaction control set of the sequence of transaction control sets.