摘要:
A method for making a multilayered electronic device with at least one epitaxial layer grown on a single-crystal film bonded to a composite wherein at least one layer is polycrystalline, the method includes the step of bonding a single-crystal film at least one of the epitaxial layers on the single-crystal film wherein thermal coefficients of expansion for the substrate and the epitaxial layer are closely matched.
摘要:
The invention uses implantation, typically hydrogen implantation or implantation of hydrogen in combination with other elements, to a selected depth into a wafer with that contains one or more etch stops layers, treatment to split the wafer at this selected depth, and subsequent etching procedures to expose etch stop layer and ultra-thin material layer. A method for making an ultra-thin material layer bonded to a substrate, has the steps: (a) growing an etch stop layer on a first substrate; (b) growing an ultra-thin material layer on the etch stop layer; (c) implanting an implant gas to a selected depth into the first substrate; (d) bonding the ultra-thin material layer to a second substrate; (e) treating the first substrate to cause the first substrate to split at the selected depth; (f) etching remaining portion of first substrate to expose the etch stop layer, and (g) etching the etch stop layer to expose the ultra-thin material layer.
摘要:
An inverted P-channel III-nitride field effect transistor with hole carriers in the channel comprising a gallium-polar III-Nitride grown epitaxially on a substrate, a barrier, a two-dimensional hole gas in the barrier layer material at the heterointerface of the first material, and wherein the gallium-polar III-Nitride material comprises III-Nitride epitaxial material layers grown in such a manner that when GaN is epitaxially grown the top surface of the epitaxial layer is gallium-polar. A method of making a P-channel III-nitride field effect transistor with hole carriers in the channel comprising selecting a face of a substrate so that the gallium-polar (0001) face is the dominant face for growth of III-Nitride epitaxial layer growth material, growing a GaN epitaxial layer, doping, growing a barrier, etching, forming a contact, performing device isolation, defining a gate opening, defining gate metal, making a contact window, and depositing and defining a thick metal.
摘要:
A non-inverted P-channel III-nitride field effect transistor with hole carriers in the channel comprising a nitrogen-polar III-Nitride first material, a barrier material layer, a two-dimensional hole gas in the barrier layer, and wherein the nitrogen-polar III-Nitride material comprises one or more III-Nitride epitaxial material layers grown in such a manner that when GaN is epitaxially grown the top surface of the epitaxial layer is nitrogen-polar. A method of making a P-channel III-nitride field effect transistor with hole carriers in the channel comprising selecting a face or offcut orientation of a substrate so that the nitrogen-polar (001) face is the dominant face, growing a nucleation layer, growing a GaN epitaxial layer, doping the epitaxial layer, growing a barrier layer, etching the GaN, forming contacts, performing device isolation, defining a gate opening, depositing and defining gate metal, making a contact window, depositing and defining a thick metal.
摘要:
High electron mobility transistors and fabrication processes are presented in which a barrier material layer of uniform thickness is provided for threshold voltage control under an enhanced channel charge inducing material layer (ECCIML) in source and drain regions with the ECCIML layer removed in the gate region.
摘要:
Ultraviolet or Extreme Ultraviolet and/or visible detector apparatus and fabrication processes are presented, in which the detector includes a thin graphene electrode structure disposed over a semiconductor surface to provide establish a potential in the semiconductor material surface and to collect photogenerated carriers, with a first contact providing a top side or bottom side connection for the semiconductor structure and a second contact for connection to the graphene layer.
摘要:
Semiconductor devices that include a semiconductor structure integrated with one or more diamond material layers. A first diamond material layer is formed on a bottom surface and optionally, the side surfaces of the semiconductor structure. In some embodiments, at least a portion of the semiconductor structure is embedded in the diamond. An electrical device can be formed on a top surface of the semiconductor structure. A second diamond material layer can be formed on the top surface of the semiconductor structure. The semiconductor structure can include a III-nitride material such as GaN, which can be embedded within a the first diamond material layer or encased by the first and/or second diamond material layer.
摘要:
High electron mobility transistors and fabrication processes are presented in which a barrier material layer of uniform thickness is provided for threshold voltage control under an enhanced channel charge inducing material layer (ECCIML) in source and drain regions with the ECCIML layer removed in the gate region.
摘要:
High electron mobility transistors and fabrication processes are presented in which a barrier material layer of uniform thickness is provided for threshold voltage control under an enhanced channel charge inducing material layer (ECCIML) in source and drain regions with the ECCIML layer removed in the gate region.
摘要:
High electron mobility transistors and fabrication processes are presented in which a barrier material layer of uniform thickness is provided for threshold voltage control under an enhanced channel charge inducing material layer (ECCIML) in source and drain regions with the ECCIML layer removed in the gate region.