摘要:
High electron mobility transistors and fabrication processes are presented in which a barrier material layer of uniform thickness is provided for threshold voltage control under an enhanced channel charge inducing material layer (ECCIML) in source and drain regions with the ECCIML layer removed in the gate region.
摘要:
High electron mobility transistors and fabrication processes are presented in which a barrier material layer of uniform thickness is provided for threshold voltage control under an enhanced channel charge inducing material layer (ECCIML) in source and drain regions with the ECCIML layer removed in the gate region.
摘要:
High electron mobility transistors and fabrication processes are presented in which a barrier material layer of uniform thickness is provided for threshold voltage control under an enhanced channel charge inducing material layer (ECCIML) in source and drain regions with the ECCIML layer removed in the gate region.
摘要:
High electron mobility transistors and fabrication processes are presented in which a barrier material layer of uniform thickness is provided for threshold voltage control under an enhanced channel charge inducing material layer (ECCIML) in source and drain regions with the ECCIML layer removed in the gate region.
摘要:
High electron mobility transistors and fabrication processes are presented in which a barrier material layer of uniform thickness is provided for threshold voltage control under an enhanced channel charge inducing material layer (ECCIML) in source and drain regions with the ECCIML layer removed in the gate region.
摘要:
High electron mobility transistors and fabrication processes are presented in which a barrier material layer of uniform thickness is provided for threshold voltage control under an enhanced channel charge inducing material layer (ECCIML) in source and drain regions with the ECCIML layer removed in the gate region.
摘要:
A method of growing crystalline materials on two-dimensional inert materials comprising functionalizing a surface of a two-dimensional inert material, growing a nucleation layer on the functionalized surface, and growing a crystalline material. A crystalline material grown on a two-dimensional inert material made from the process comprising functionalizing a surface of a two-dimensional inert material, growing a nucleation layer on the functionalized surface, and growing a crystalline material.
摘要:
A device with N-Channel and P-Channel III-Nitride field effect transistors comprising a non-inverted P-channel III-Nitride field effect transistor on a first nitrogen-polar nitrogen face III-Nitride material, a non-inverted N-channel III-Nitride field effect transistor, epitaxially grown, a first III-Nitride barrier layer, two-dimensional hole gas, second III-Nitride barrier layer, and a two-dimensional hole gas. A method of making complementary non-inverted P-channel and non-inverted N-channel III-Nitride FET comprising growing epitaxial layers, depositing oxide, defining opening, growing epitaxially a first nitrogen-polar III-Nitride material, buffer, back barrier, channel, spacer, barrier, and cap layer, and carrier enhancement layer, depositing oxide, growing AlN nucleation layer/polarity inversion layer, growing gallium-polar III-Nitride, including epitaxial layers, depositing dielectric, fabricating P-channel III-Nitride FET, and fabricating N-channel III-Nitride FET.
摘要:
A method of growing crystalline materials on two-dimensional inert materials comprising functionalizing a surface of a two-dimensional inert material, growing a nucleation layer on the functionalized surface, and growing a crystalline material. A crystalline material grown on a two-dimensional inert material made from the process comprising functionalizing a surface of a two-dimensional inert material, growing a nucleation layer on the functionalized surface, and growing a crystalline material.
摘要:
A device with N-Channel and P-Channel III-Nitride field effect transistors comprising a non-inverted P-channel III-Nitride field effect transistor on a first nitrogen-polar nitrogen face III-Nitride material, a non-inverted N-channel III-Nitride field effect transistor, epitaxially grown, a first III-Nitride barrier layer, two-dimensional hole gas, second III-Nitride barrier layer, and a two-dimensional hole gas. A method of making complementary non-inverted P-channel and non-inverted N-channel III-Nitride FET comprising growing epitaxial layers, depositing oxide, defining opening, growing epitaxially a first nitrogen-polar III-Nitride material, buffer, back barrier, channel, spacer, barrier, and cap layer, and carrier enhancement layer, depositing oxide, growing AlN nucleation layer/polarity inversion layer, growing gallium-polar III-Nitride, including epitaxial layers, depositing dielectric, fabricating P-channel III-Nitride FET, and fabricating N-channel III-Nitride FET.