Abstract:
The purpose of the present invention is to realize the TFT of the oxide semiconductor having a superior characteristics and high reliability during the product's life. The structure of the present invention is as follows. A display device comprising: a substrate including a display area where plural pixels are formed, the pixel includes a first TFT of a first oxide semiconductor, a first gate insulating film is formed on the first oxide semiconductor, the first gate insulating film is a laminated film of a first silicon oxide film and a first aluminum oxide film, a gate electrode is formed on the first aluminum film.
Abstract:
The invention allows formation of LTPS TFTs and TAOS TFTs on the same substrate. The invention provides a display device including a substrate having a display area in which pixels are formed. The pixels include a first TFT made of a TAOS. The drain of the first TFT is formed of first LTPS 112. The source of the first TFT is formed of second LTPS 113. The first LTPS 112 is connected to a first electrode 106 via a first through-hole 108 formed in an insulating film 105 covering the first TFT. The second LTPS 113 is connected to a second electrode 107 via a second through-hole 108 formed in the insulating film 105 covering the first TFT.
Abstract:
A manufacturing method of a semiconductor device includes forming an oxide semiconductor layer on an insulating layer, a part of the insulating layer being exposed from the oxide semiconductor layer, performing a plasma process by use of chlorine-containing gas on the part of the insulating layer exposed from the oxide semiconductor layer, and removing chlorine impurities from a surface layer of the exposed part of the insulating layer. The chlorine impurities may be removed by a first etching process performed by use of fluorine-containing gas. The fluorine-containing gas may contain CF4 and CHF3. The plasma process may be a second etching process performed by use of chlorine-containing gas.
Abstract:
To maintain good operation of a peripheral circuit using an oxide thin film transistor in a liquid crystal display panel to which photo alignment is applied, the liquid crystal display panel includes: a transparent substrate provided with an oxide thin film transistor in the periphery of a pixel portion in which pixel electrodes are arranged, to control the pixel electrodes; and an alignment film to align liquid crystal provided in the pixel portion. The alignment film is subjected to photo alignment treatment by ultraviolet irradiation. Further, an ultraviolet absorbing layer is provided so as to cover the oxide thin film transistor. For example, an alignment film is used for the ultraviolet absorbing layer to absorb the ultraviolet light for the photo aliment treatment of the alignment film, in the peripheral circuit portion for controlling the pixel electrodes, thereby preventing the threshold voltage of the oxide thin film transistor from shifting.
Abstract:
The purpose of the present invention is to decrease the resistance of the drain and source in the TFT of the oxide semiconductor as well as to have stable Vd-Id characteristics of the TFT. The structure of the present invention is as follows: A display device having plural pixels including thin film transistors (TFT) having oxide semiconductor films comprising: a gate insulating film formed on the oxide semiconductor film, an aluminum oxide film formed on the gate insulating film, a gate electrode formed on the aluminum oxide film, a side spacer formed on both sides of the gate electrode, and an interlayer insulating film formed on the gate electrode, the side spacer, a drain and a source, wherein in a plan view, and in a direction from the drain to the source, a length of the gate electrode is shorter than a length of the aluminum oxide film.
Abstract:
A display device including: a substrate; a first thin film transistor of polysilicon semiconductor, a second thin film transistor of oxide semiconductor; a first light shading film opposing to the polysilicon semiconductor, and a second light shading film opposing to the oxide semiconductor; a first insulating film, a second insulating film which is constituted from plural insulating films, and a third insulating film superposed in this order; a first through hole penetrating the second insulating film and not penetrating the first insulating film and the third insulating film; a second through hole penetrating the first insulating film and the third insulating film; the first light shading film connects with a first conductive component, a part of the first conductive component exists on the third insulating film, through the second through hole.
Abstract:
A display device is provided and includes a substrate on which a TFT is formed. The display device including an organic film formed on the TFT, the organic film having a through hole, and a first common electrode, an upper pixel electrode and a second common electrode which are stacked in this order above the organic passivation film, a filler being filled in the through hole, and wherein the upper pixel electrode is electrically connected with the TFT, and an edge of the upper pixel electrode is located directly on the filler.
Abstract:
According to one embodiment, a display device includes a signal line, a scanning line, a semiconductor layer, a first insulating layer which covers the semiconductor layer, a color filter above the first insulating layer, a pixel electrode above the color filter and a common electrode. The first insulating layer includes a first contact hole for connecting the semiconductor layer and the pixel electrode to each other. The first contact hole is provided at a position displaced from the color filter in plan view.
Abstract:
A display device including: a substrate; a first thin film transistor of polysilicon semiconductor, a second thin film transistor of oxide semiconductor; a first light shading film opposing to the polysilicon semiconductor, and a second light shading film opposing to the oxide semiconductor; a first insulating film, a second insulating film which is constituted from plural insulating films, and a third insulating film superposed in this order; a first through hole penetrating the second insulating film and not penetrating the first insulating film and the third insulating film; a second through hole penetrating the first insulating film and the third insulating film; the first light shading film connects with a first conductive component, a part of the first conductive component exists on the third insulating film, through the second through hole.
Abstract:
The object of the present invention is to make it possible to form an LTPS TFT and an oxide semiconductor TFT on the same substrate. A display device includes a substrate having a display region in which pixels are formed. The pixel includes a first TFT using an oxide semiconductor 109. An oxide film 110 as an insulating material is formed on the oxide semiconductor 109. A gate electrode 111 is formed on the oxide film 110. A first electrode 115 is connected to a drain of the first TFT via a first through hole formed in the oxide film 110. A second electrode 116 is connected to a source of the first TFT via a second through hole formed in the oxide film 110.