Abstract:
An inspection system for inspecting a surface of a wafer/mask/reticle can include a modular array. The modular array can include a plurality of time delay integration (TDI) sensor modules, each TDI sensor module having a TDI sensor and a plurality of localized circuits for driving and processing the TDI sensor. At least one of the localized circuits can control a clock associated with the TDI sensor. At least one light pipe can be used to distribute a source illumination to the plurality of TDI sensor modules. The plurality of TDI sensor modules can be positioned capture a same inspection region or different inspection regions. The plurality of TDI sensor modules can be identical or provide for different integration stages. Spacing of the modules can be arranged to provide 100% coverage of the inspection region in one pass or for fractional coverage requiring two or more passes for complete coverage.
Abstract:
Improved laser systems and associated techniques generate an ultra-violet (UV) wavelength of approximately 193.368 nm from a fundamental vacuum wavelength near 1064 nm. Preferred embodiments separate out an unconsumed portion of an input wavelength to at least one stage and redirect that unconsumed portion for use in another stage. The improved laser systems and associated techniques result in less expensive, longer life lasers than those currently being used in the industry. These laser systems can be constructed with readily-available, relatively inexpensive components.
Abstract:
A pulse multiplier includes a polarizing beam splitter, a wave plate, and a set of multi-surface reflecting components (e.g., one or more etalons and one or more mirrors). The polarizing beam splitter passes input laser pulses through the wave plate to the multi-surface reflecting components, which reflect portions of each input laser pulse back through the wave plate to the polarizing beam splitter. The polarizing beam splitter reflects each reflected portion to form an output of the pulse multiplier. The multi-surface reflecting components are configured such that the output pulses exiting the pulse multiplier have an output repetition pulse frequency rate that is at least double the input repetition pulse frequency.
Abstract:
A method of inspecting a sample at high speed includes directing and focusing radiation onto a sample, and receiving radiation from the sample and directing received radiation to an image sensor. Notably, the method includes driving the image sensor with predetermined signals. The predetermined signals minimize a settling time of an output signal of the image sensor. The predetermined signals are controlled by a phase accumulator, which is used to select look-up values. The driving can further include loading an initial phase value, selecting most significant bits of the phase accumulator, and converting the look-up values to an analog signal. In one embodiment, for each cycle of a phase clock, a phase increment can be added to the phase accumulator. The driving can be performed by a custom waveform generator.
Abstract:
A DUV laser includes an optical bandwidth filtering device, such as etalon, which is disposed outside of the laser oscillator cavity of the fundamental laser, and which directs one range of wavelengths into one portion of a frequency conversion chain and another range of wavelengths into another portion of the frequency conversion train, thereby reducing the bandwidth of the DUV laser output while maintaining high conversion efficiency in the frequency conversion chain.
Abstract:
Laser-induced damage in an optical material can be mitigated by creating conditions at which light absorption is minimized. Specifically, electrons populating defect energy levels of a band gap in an optical material can be promoted to the conduction band—a process commonly referred to as bleaching. Such bleaching can be accomplished using a predetermined wavelength that ensures minimum energy deposition into the material, ideally promoting electron to just inside the conduction band. In some cases phonon (i.e. thermal) excitation can also be used to achieve higher depopulation rates. In one embodiment, a bleaching light beam having a wavelength longer than that of the laser beam can be combined with the laser beam to depopulate the defect energy levels in the band gap. The bleaching light beam can be propagated in the same direction or intersect the laser beam.
Abstract:
A module for high speed image processing includes an image sensor for generating a plurality of analog outputs representing an image and a plurality of HDDs for concurrently processing the plurality of analog outputs. Each HDD is an integrated circuit configured to process in parallel a predetermined set of the analog outputs. Each channel of the HDD can include an AFE for conditioning a signal representing one sensor analog output, an ADC for converting a conditioned signal into a digital signal, and a data formatting block for calibrations and formatting the digital signal for transport to an off-chip device. The HDDs and drive electronics are combined with the image sensor into one package to optimize signal integrity and high dynamic range, and to achieve high data rates through use of synchronized HDD channels. Combining multiple modules results in a highly scalable imaging subsystem optimized for inspection and metrology applications.
Abstract:
An improved solid-state laser for generating sub-200 nm light is described. This laser uses a fundamental wavelength between about 1030 nm and 1065 nm to generate the sub-200 nm light. The final frequency conversion stage of the laser creates the sub-200 nm light by mixing a wavelength of approximately 1109 nm with a wavelength of approximately 234 nm. By proper selection of non-linear media, such mixing can be achieved by nearly non-critical phase matching. This mixing results in high conversion efficiency, good stability, and high reliability.
Abstract:
The present invention includes an interposer disposed on a surface of a substrate, a light sensing array sensor disposed on the interposer, the light sensing array sensor being back-thinned and configured for back illumination, the light sensing array sensor including columns of pixels, one or more amplification circuitry elements configured to amplify an output of the light sensing array sensor, the amplification circuits being operatively connected to the interposer, one or more analog-to-digital conversion circuitry elements configured to convert an output of the light sensing array sensor to a digital signal, the ADC circuitry elements being operatively connected to the interposer, one or more driver circuitry elements configured to drive a clock or control signal of the array sensor, the interposer configured to electrically couple at least two of the light sensing array sensor, the amplification circuits, the conversion circuits, the driver circuits, or one or more additional circuits.
Abstract:
A pulse multiplier includes a polarizing beam splitter, a wave plate, and a set of multi-surface reflecting components (e.g., one or more etalons and one or more mirrors). The polarizing beam splitter passes input laser pulses through the wave plate to the multi-surface reflecting components, which reflect portions of each input laser pulse back through the wave plate to the polarizing beam splitter. The polarizing beam splitter reflects each reflected portion to form an output of the pulse multiplier. The multi-surface reflecting components are configured such that the output pulses exiting the pulse multiplier have an output repetition pulse frequency rate that is at least double the input repetition pulse frequency.