摘要:
A method of forming a semiconductor device is provided, in which the dopant for the source and drain regions is introduced from a doped dielectric layer. In one example, a gate structure is formed on a semiconductor layer of an SOI substrate, in which the thickness of the semiconductor layer is less than 10 nm. A doped dielectric layer is formed over at least the portion of the semiconductor layer that is adjacent to the gate structure. The dopant from the doped dielectric layer is driven into the portion of the semiconductor layer that is adjacent to the gate structure. The dopant diffused into the semiconductor provides source and drain extension regions.
摘要:
An FET device is disclosed which contains a source and a drain that are each provided with an extension. The source and the drain, and their extensions, are composed of epitaxial materials containing Ge or C. The epitaxial materials and the Si substrate have differing lattice constants, consequently the source and the drain and their extensions are imparting a state of stress onto the channel. For a PFET device the epitaxial material may be SiGe, or Ge, and the channel may be in a compressive state of stress. For an NFET device the epitaxial material may be SiC and the channel may be in a tensile state of stress. A method for fabricating an FET device is also disclosed. One may form a first recession in the Si substrate to a first depth on opposing sides of the gate. The first recession is filled epitaxially with a first epitaxial material. Then, a second recession may be formed in the Si substrate to a second depth, which is greater than the first depth. Next, one may fill the second recession with a second epitaxial material, which is the same kind of material as the first epitaxial material. The epitaxial materials are selected to have a different lattice constant than the Si substrate, and consequently a state of stress is being imparted onto the channel.
摘要:
A method of forming a semiconductor device is provided where in one embodiment an STI fill is recessed below the pad nitride and pad oxide layers, to a level substantially coplanar with the top surface of the substrate. A thin (having a thickness in the range of about 10 Å-100 Å) wet etch resistant layer is formed in contact with and completely covering at least the top surface of the recessed STI fill material. The thin wet etch resistant layer is more resistant to a wet etch process than at least the pad oxide layer. The thin wet etch resistant layer may be a refractory dielectric material, or a dielectric such as HfOx, AlyOx, ZrOx, HfZrOx, and HfSiOx. The inventive wet etch resistant layer improves the wet etch budget of subsequent wet etch processing steps.
摘要翻译:提供一种形成半导体器件的方法,其中在一个实施例中,STI填充物在衬垫氮化物和衬垫氧化物层下方凹入到与衬底的顶表面基本上共面的水平。 至少形成凹入的STI填充材料的上表面,形成薄(具有在约10埃-120埃范围内的厚度)耐湿蚀刻层。 薄的耐湿蚀刻层比至少衬垫氧化物层更耐湿蚀刻工艺。 薄的耐湿蚀刻层可以是耐火电介质材料,或诸如HfO x,Al y O x,ZrO x,HfZrO x和HfSiO x的电介质。 本发明的耐湿蚀刻层提高了后续湿蚀刻处理步骤的湿法蚀刻预算。
摘要:
A method for fin field effect transistor (finFET) device formation includes forming a plurality of fins on a substrate; forming a gate region over the plurality of fins; and forming isolation areas for the finFET device after formation of the gate region, wherein forming the isolation areas for the finFET device comprises performing one of oxidation or removal of a subset of the plurality of fins.
摘要:
A shallow trench isolation region is provided in which void formation is substantially or totally eliminated therefrom. The shallow trench isolation mitigates active shorts between two active regions of a semiconductor substrate. The shallow trench isolation region includes a bilayer liner which is present on sidewalls and a bottom wall of a trench that is formed in a semiconductor substrate. The bilayer liner of the present disclosure includes, from bottom to top, a shallow trench isolation liner, e.g., a semiconductor oxide and/or nitride, and a high k liner, e.g., a dielectric material having a dielectric constant that is greater than silicon oxide.
摘要:
A method of forming a semiconductor device is provided where in one embodiment an STI fill is recessed below the pad nitride and pad oxide layers, to a level substantially coplanar with the top surface of the substrate. A thin (having a thickness in the range of about 10 Å-100 Å) wet etch resistant layer is formed in contact with and completely covering at least the top surface of the recessed STI fill material. The thin wet etch resistant layer is more resistant to a wet etch process than at least the pad oxide layer. The thin wet etch resistant layer may be a refractory dielectric material, or a dielectric such as HfOx, AlyOx, ZrOx, HfZrOx, and HfSiOx. The inventive wet etch resistant layer improves the wet etch budget of subsequent wet etch processing steps.
摘要翻译:提供一种形成半导体器件的方法,其中在一个实施例中,STI填充物在衬垫氮化物和衬垫氧化物层下方凹入到与衬底的顶表面基本上共面的水平。 至少形成凹入的STI填充材料的上表面,形成薄(具有在约10埃-120埃范围内的厚度)耐湿蚀刻层。 薄的耐湿蚀刻层比至少衬垫氧化物层更耐湿蚀刻工艺。 薄的耐湿蚀刻层可以是耐火电介质材料,或诸如HfO x,Al y O x,ZrO x,HfZrO x和HfSiO x的电介质。 本发明的耐湿蚀刻层提高了后续湿蚀刻处理步骤的湿法蚀刻预算。
摘要:
A method of forming a semiconductor device is provided where in one embodiment an STI fill is recessed below the pad nitride and pad oxide layers, to a level substantially coplanar with the top surface of the substrate. A thin (having a thickness in the range of about 10 Å-100 Å) wet etch resistant layer is formed in contact with and completely covering at least the top surface of the recessed STI fill material. The thin wet etch resistant layer is more resistant to a wet etch process than at least the pad oxide layer. The thin wet etch resistant layer may be a refractory dielectric material, or a dielectric such as HfOx, AlyOx, ZrOx, HfZrOx, and HfSiOx. The inventive wet etch resistant layer improves the wet etch budget of subsequent wet etch processing steps.
摘要翻译:提供一种形成半导体器件的方法,其中在一个实施例中,STI填充物在衬垫氮化物和衬垫氧化物层下方凹入到与衬底的顶表面基本上共面的水平。 至少形成凹入的STI填充材料的上表面,形成薄(具有在约10埃-120埃范围内的厚度)耐湿蚀刻层。 薄的耐湿蚀刻层比至少衬垫氧化物层更耐湿蚀刻工艺。 薄的耐湿蚀刻层可以是耐火电介质材料,或诸如HfO x,Al y O x,ZrO x,HfZrO x和HfSiO x的电介质。 本发明的耐湿蚀刻层提高了后续湿蚀刻处理步骤的湿法蚀刻预算。
摘要:
A gate dielectric is patterned after formation of a first gate spacer by anisotropic etch of a conformal dielectric layer to minimize overetching into a semiconductor layer. In one embodiment, selective epitaxy is performed to sequentially form raised epitaxial semiconductor portions, a disposable gate spacer, and raised source and drain regions. The disposable gate spacer is removed and ion implantation is performed into exposed portions of the raised epitaxial semiconductor portions to form source and drain extension regions. In another embodiment, ion implantation for source and drain extension formation is performed through the conformal dielectric layer prior to an anisotropic etch that forms the first gate spacer. The presence of the raised epitaxial semiconductor portions or the conformation dielectric layer prevents complete amorphization of the semiconductor material in the source and drain extension regions, thereby enabling regrowth of crystalline source and drain extension regions.
摘要:
A method of forming a semiconductor device is provided where in one embodiment an STI fill is recessed below the pad nitride and pad oxide layers, to a level substantially coplanar with the top surface of the substrate. A thin (having a thickness in the range of about 10 Å-100 Å) wet etch resistant layer is formed in contact with and completely covering at least the top surface of the recessed STI fill material. The thin wet etch resistant layer is more resistant to a wet etch process than at least the pad oxide layer. The thin wet etch resistant layer may be a refractory dielectric material, or a dielectric such as HfOx, AlyOx, ZrOx, HfZrOx, and HfSiOx. The inventive wet etch resistant layer improves the wet etch budget of subsequent wet etch processing steps.
摘要翻译:提供一种形成半导体器件的方法,其中在一个实施例中,STI填充物在衬垫氮化物和衬垫氧化物层下方凹入到与衬底的顶表面基本上共面的水平。 至少形成凹入的STI填充材料的上表面,形成薄(具有在约10埃-120埃范围内的厚度)耐湿蚀刻层。 薄的耐湿蚀刻层比至少衬垫氧化物层更耐湿蚀刻工艺。 薄的耐湿蚀刻层可以是耐火电介质材料,或诸如HfO x,Al y O x,ZrO x,HfZrO x和HfSiO x的电介质。 本发明的耐湿蚀刻层提高了后续湿蚀刻处理步骤的湿法蚀刻预算。
摘要:
A method for fin field effect transistor (finFET) device formation includes forming a plurality of fins on a substrate; forming a gate region over the plurality of fins; and forming isolation areas for the finFET device after formation of the gate region, wherein forming the isolation areas for the finFET device comprises performing one of oxidation or removal of a subset of the plurality of fins.