Abstract:
A transmitting system, a receiving system, and a method of processing broadcast signals are disclosed. Herein, the transmitting system includes an RS frame encoder, a block processor, a group formatter, and a trellis encoding module. The RS frame encoder performs error correction encoding on an RS frame payload including mobile service data so as to form an RS frame, divides the RS frame into a plurality of portions, and outputs the divided RS frame portions. The block processor performs one of ½-rate encoding and ¼-rate encoding on each bit of the mobile service data included in each portion. The group formatter maps a portion including symbols of the ¼-rate encoded mobile service data and symbols of the ½-rate encoded mobile service data to a corresponding region of a data group. And, the trellis encoding module performs trellis encoding on the symbols of the ¼-rate encoded mobile service data and the symbols of the ½-rate encoded mobile service data of the data group.
Abstract:
A DTV transmitting system includes an encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The encoder codes enhanced data for error correction, permutes the coded data, and further codes the permuted data for error detection. The randomizer randomizes the coded enhanced data, and the block processor codes the randomized data at an effective coding rate of 1/H. The group formatter forms a group of enhanced data having data regions, and inserts the coded enhanced data into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into corresponding data bytes.
Abstract:
A digital broadcast transmitting/receiving system and a method for processing data are disclosed. The method for processing data may enhance the receiving performance of the receiving system by performing additional coding and multiplexing processes on the traffic information data and transmitting the processed data. Thus, robustness is provided to the traffic information data, thereby enabling the data to respond strongly against the channel environment which is always under constant and vast change.
Abstract:
A channel equalizer includes a first transformer, an estimator, an average calculator, a second transformer, a coefficient calculator, a compensator, and a third transformer. The first transformer converts normal data into frequency domain data, where a known data sequence is periodically repeated in the normal data. The estimator estimates channel impulse responses (CIR) during known data intervals adjacent to each normal data block. The average calculator calculates an average value of the CIRs. The second transformer converts the average value into frequency domain data. The coefficient calculator calculates equalization coefficients using the average value, and the compensator compensates channel distortion of each normal data block using the coefficients. The third transformer converts the compensated data block into time domain data.
Abstract:
A DTV transmitting system includes an encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The encoder codes enhanced data for error correction, permutes the coded data, and further codes the permuted data for error detection. The randomizer randomizes the coded enhanced data, and the block processor codes the randomized data at an effective coding rate of 1/H. The group formatter forms a group of enhanced data having data regions, and inserts the coded enhanced data into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into corresponding data bytes.
Abstract:
A DTV transmitting system includes a frame encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The frame encoder builds an enhanced data frame and encodes the frame two times for first and second error correction, respectively. It further permutes a plurality of encoded data frames. The randomizer randomizes the permuted enhanced data, and the block processor codes the randomized data at a rate of 1/N1. The group formatter forms a group of enhanced data having one or more data regions and inserts the data coded at the rate of 1/N1 into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into enhanced data packets.
Abstract:
According to one embodiment, a method of processing a digital broadcasting signal in a transmitter includes: performing RS (Reed-Solomon) encoding on signaling data containing cross layer information between a physical layer and a upper layer; interleaving the RS encoded signaling data, wherein interleaving the RS encoded signaling data includes writing the RS encoded signaling data row-by-row from left-to-right and top-to-bottom in a signaling data block, and outputting the signaling data in the signaling data block by reading column-by-column from top-to-bottom and left-to-right; and transmitting the digital broadcasting signal including the mobile service data and the interleaved signaling data during slots.
Abstract:
A digital television (DTV) receiving system includes an information detector, a resampler, a timing recovery unit, and a carrier recovery unit. The information detector detects a known data sequence which is periodically inserted in a digital television (DTV) signal received from a DTV transmitting system. The resampler resamples the DTV signal at a predetermined resampling rate. The timing recovery unit performs timing recovery on the DTV signal by detecting a timing error from the resampled DTV signal using the detected known data sequence. The carrier recovery unit performs carrier recovery on the resampled DTV signal by estimating a frequency offset value of the resampled DTV signal using the detected known data sequence.
Abstract:
The present invention is directed to a digital broadcast system and a data processing method. A broadcast signal in which mobile service data and main service data are multiplexed is transmitted and received. Then, in a broadcasting receiver, the program table information including information about a service or a program of an ensemble is parsed according to an identifier of the ensemble in which the mobile service data are multiplexed, in the received broadcast signal. And a mobile service is outputted by using the mobile service data and the parsed program table information.
Abstract:
A DTV transmitting system includes an encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The encoder codes enhanced data for error correction, permutes the coded data, and further codes the permuted data for error detection. The randomizer randomizes the coded enhanced data, and the block processor codes the randomized data at an effective coding rate of 1/H. The group formatter forms a group of enhanced data having data regions, and inserts the coded enhanced data into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into corresponding data bytes.