摘要:
This invention discloses a power switch that includes a fast-switch semiconductor power device and a slow-switch semiconductor power device controllable to turn on and off a current transmitting therethrough. The slow-switch semiconductor power device further includes a ballasting resistor for increasing a device robustness of the slow switch semiconductor power device. In an exemplary embodiment, the fast-switch semiconductor power device includes a fast switch metal oxide semiconductor field effect transistor (MOSFET) and the slow-switch semiconductor power device includes a slow switch MOSFET wherein the slow switch MOSFET further includes a source ballasting resistor.
摘要:
This invention discloses a new switching device that includes a drain disposed on a first surface and a source region disposed near a second surface of a semiconductor opposite the first surface. An insulated gate electrode is disposed on top of the second surface for controlling a source to drain current and a source electrode is interposed into the insulated gate electrode for substantially preventing a coupling of an electrical field between the gate electrode and an epitaxial region underneath the insulated gate electrode. The source electrode further covers and extends over the insulated gate for covering an area on the second surface of the semiconductor to contact the source region, An epitaxial layer is disposed above and having a different dopant concentration than the drain region. The gate electrode is insulated from the source electrode by an insulation layer having a thickness depending on a Vgsmax rating of the vertical power device.
摘要:
This invention discloses a power switch that includes a fast-switch semiconductor power device and a slow-switch semiconductor power device controllable to turn on and off a current transmitting therethrough. The slow-switch semiconductor power device further includes a ballasting resistor for increasing a device robustness of the slow switch semiconductor power device. In an exemplary embodiment, the fast-switch semiconductor power device includes a fast switch metal oxide semiconductor field effect transistor (MOSFET) and the slow-switch semiconductor power device includes a slow switch MOSFET wherein the slow switch MOSFET further includes a source ballasting resistor.
摘要:
A method for manufacturing a Schottky diode comprising steps of 1) providing a region with a dopant of a second conductivity type opposite to a first conductivity type to form a top doped region in a semiconductor substrate of said first conductivity type; 2) providing a trench through the top doped region to a predetermined depth and providing a dopant of the second conductivity type to form a bottom dopant region of the second conductivity type; and 3) lining a Schottky barrier metal layer on a sidewall of the trench at least extending from a bottom of the top doped region to a top of the bottom doped region.
摘要:
This invention discloses a semiconductor power device disposed in a semiconductor substrate and having an active cell area and an edge termination area wherein the edge termination area comprises a wide trench filled with a field-crowding reduction filler and a buried field plate buried under a top surface of the semiconductor substrate and laterally extended over a top portion of the field crowding field to move a peak electric field laterally away from the active cell area. In a specific embodiment, the field-crowding reduction filler comprises a silicon oxide filled in the wide trench.
摘要:
This invention discloses a semiconductor power device that includes a plurality of power transistor cells surrounded by a trench opened in a semiconductor substrate. At least one of the cells constituting an active cell has a source region disposed next to a trenched gate electrically connecting to a gate pad and surrounding the cell. The trenched gate further has a bottom-shielding electrode filled with a gate material disposed below and insulated from the trenched gate. At least one of the cells constituting a source-contacting cell surrounded by the trench with a portion functioning as a source connecting trench is filled with the gate material for electrically connecting between the bottom-shielding electrode and a source metal disposed directly on top of the source connecting trench. The semiconductor power device further includes an insulation protective layer disposed on top of the semiconductor power device having a plurality of source openings on top of the source region and the source connecting trench provided for electrically connecting to the source metal and at least a gate opening provided for electrically connecting the gate pad to the trenched gate.
摘要:
This invention discloses an improved MOSFET devices manufactured with a trenched gate by forming the sidewalls of the trench on a (110) crystal orientation of a semiconductor substrate. The trench is covering with a dielectric oxide layer along the sidewalls and the bottom surface or the termination of the trench formed along different crystal orientations of the semiconductor substrate. Special manufacturing processes such as oxide annealing process, special mask or SOG processes are implemented to overcome the limitations of the non-uniform dielectric layer growth.
摘要:
A method for manufacturing a Schottky diode comprising steps of 1) providing a region with a dopant of a second conductivity type opposite to a first conductivity type to form a top doped region in a semiconductor substrate of said first conductivity type; 2) providing a trench through the top doped region to a predetermined depth and providing a dopant of the second conductivity type to form a bottom dopant region of the second conductivity type; and 3) lining a Schottky barrier metal layer on a sidewall of the trench at least extending from a bottom of the top doped region to a top of the bottom doped region.
摘要:
This invention discloses a new MOSFET device. The MOSFET device has an improved operation characteristic achieved by connecting a shunt FET of low impedance to the MOSFET device. The shunt FET is to shunt a transient current therethrough. The shunt FET is employed for preventing an inadvertent turning on of the MOSFET device. The inadvertent turning on of the MOSFET may occur when a large voltage transient occurs at the drain of the MOSFET device. By connecting the gate of the shunt FET to the drain of the MOSFET device, a low impedance path is provided at the right point of time during the circuit operation to shunt the current without requiring any external circuitry.
摘要:
A Schottky diode includes at least a trenched opened in a semiconductor substrate doped with a dopant of a first conductivity type wherein the trench is filled with a Schottky junction barrier metal. The Schottky diode further includes one or more dopant region of a second conductivity type surrounding sidewalls of the trench distributed along the depth of the trench for shielding a reverse leakage current through the sidewalls of the trench. The Schottky diode further includes a bottom-doped region of the second conductivity type surrounding a bottom surface of the trench and a top-doped region of the second conductivity type surrounding a top portion of the sidewalls of the trench. In a preferred embodiment, the first conductivity type is a N-type conductivity type and the middle-depth dopant region comprising a P-dopant region.