Abstract:
Embodiments of the present disclosure may include an ADC circuit including channel register sets, a conversion request flip-flop, a priority encoder circuit, and a controller circuit. The controller circuit may be configured to receive a conversion request signal, latch the conversion request signal into the conversion request flip-flop, determine by the priority encoder circuit a highest priority pending conversion request, and output an active channel identifier code. The channel identifier code may be configured to select the data channel register sets that are active by identifying received selection bits. The embodiments may include logic to store a converted value from a selected analog input to a data output register based on the channel identifier code.
Abstract:
Using a combination of frequency dithering of a PWM counter and a variable time delay circuit yields improved PWM frequency resolution with realizable circuit components and clock operating frequencies. A controllable time delay circuit lengthens a PWM signal during the first PWM cycle. During the second PWM cycle, the PWM period is increased beyond the desired amount, but the delay is reduced during this second PWM cycle to achieve the correct (desired) PWM signal period. The dithering of the PWM signal period enables the time delay circuit to be “reset” so that an infinite delay circuit is not required. The time delay circuit provides short term (one cycle) frequency adjustment so that the resulting PWM cycle is not dithered and has a period at the desired frequency resolution.
Abstract:
An analog-to-digital converter includes differential digital delay lines, a circuit including a set of delay elements included in the differential digital delay lines, and another circuit including another set of delay elements included in the differential digital delay lines. The first circuit is configured to generate data representing an analog to digital conversion of an input. The second circuit is configured to calibrate a source to the differential digital delay lines.
Abstract:
An embedded device has a plurality of processor cores, each with a plurality of peripheral devices, wherein each peripheral device may have an output, a housing with a plurality of assignable external pins, and a plurality of peripheral pin selection modules for each processing core, wherein each peripheral pin selection module is configured to be programmable to assign an assignable external pin to one of the plurality of peripheral devices of one of the processor cores.
Abstract:
An embedded device has a plurality of processor cores, each with a plurality of peripheral devices, wherein each peripheral device has an output. Furthermore, a housing with a plurality of assignable external pins and a protected pin ownership logic for each assignable external pin is provided and configured to be programmable to assign an output function of an associated assignable external pin to only one of the plurality of processor cores.
Abstract:
Embodiments of the present disclosure include a differential digital delay line analog-to-digital converter (ADC). The ADC includes differential digital delay lines, a circuit including a set of delay elements included in the differential digital delay lines, and another circuit including another set of delay elements included in the differential digital delay lines. The first circuit is configured to generate data representing an analog to digital conversion of an input. The second circuit is configured to calibrate a source to the differential digital delay lines.
Abstract:
An integrated circuit having a plurality of selectable modes, functions and/or characteristics may be configured at the time of product manufacture by providing an appropriate resistance value pull-up resistor at an external connection (pin) of the integrated circuit package. At least one external connection (pin) may be used for such configuration of the integrated circuit. This is done without having to program the integrated circuit before placing on the product printed circuit board. The same integrated circuit may thus be used for a plurality of different products without requiring any pre-programming thereof. The integrated circuit's personality (desired characteristics) will be programmed automatically as soon as power is first applied to the finished product printed circuit board. Once the integrated circuit has been configured at power up, the external at least one connection (pin), initially used for configuration, can be used for either analog or digital input, output or input/output.
Abstract:
Groups of phase shifted Pulse Width Modulation signals are generated that maintain their duty-cycle and phase relationships as a function of the period of the PWM signal frequency. The multiphase PWM signals are generated in a ratio-metric fashion so as to greatly simplify and reduce the computational workload for a processor used in a PWM system. The groups of phase shifted PWM signals may also be synchronized with and automatically scaled to match external synchronization signals.
Abstract:
A temperature-compensating clock frequency monitor circuit may be provided to detect a clock pulse frequency in an electronic device that may cause erratic or dangerous operation of the device, as a function of an operating temperature of the device. The temperature-compensating clock frequency monitor circuit include a temperature sensor configured to measure a temperature associated with an electronic device, a clock having an operating frequency, and a frequency monitoring system. The frequency monitoring system may be configured to determine the operating frequency of the clock, and based at least on (a) the operating frequency of the clock and (b) the measured temperature associated with the electronic device, generate a corrective action signal to initiate a corrective action associated with the electronic device or a related device. The temperature sensor, clock, and frequency monitoring system may, for example, be provided on a microcontroller.
Abstract:
Embodiments of the present disclosure include a microcontroller with a processor core, memory, and a plurality of peripheral devices including a differential digital delay line analog-to-digital converter (ADC). The ADC includes differential digital delay lines and circuit comprising a set of delay elements included in the differential digital delay lines configured to generate data representing an analog to digital conversion of an input. The microcontroller also includes a digital comparator coupled with an output of the ADC and an associated register, wherein at least one output of the digital comparator is configured to directly control another peripheral of the plurality of peripherals.