Abstract:
A large scale memory array includes a. uniform pattern of uniformly sized dummy bit cells and active bit cells. Sub-arrays within the large scale memory array are separated by the dummy bit cells. Signal distribution circuitry is formed with a width or height corresponding to the width or height of the dummy bit cells so that the signal distribution circuitry occupies the same footprint as the dummy bit cells without disrupting the uniform pattern across the large scale array. Edge dummy cells of a similar size or larger than the standard size bit cells may be placed around the edge of the large scale array to further reduce pattern loading affects.
Abstract:
In an embodiment, an error detection and correction apparatus includes a positive edge triggered flip-flop that receives syndrome input based on a syndrome output a syndrome generator indicating whether or not input data includes an error, whereby the positive edge triggered flip-flop further provides a syndrome output to an error location decoder.
Abstract:
Aspects of the disclosure involve memory data scrubber circuits configured to perform memory data scrubbing operations in a processor-based memory to provide data error correction in response to periodic memory controller wake-up periods. Memory data scrubbing is performed to correct errors in data words stored in memory. Memory data scrubbing is initiated in the memory to conserve power in response to periodic memory controller wake-up periods during processor idle periods. Further, in certain aspects disclosed herein, the memory data scrubber circuit is provided as a separate system outside of the memory controller in the memory system. In this manner, power consumption can be further reduced, because the memory data scrubber circuit can continue with memory data scrubbing operations in the memory independent of the memory controller operation, and after the memory controller access commands issued during the wake-up period are completed and the memory controller is powered-down.
Abstract:
Aspects of adjusting resistive memory write driver strength based on a mimic resistive memory write operation are disclosed. In one aspect, a write driver adjustment circuit is provided to adjust a write current provided by a write driver to a resistive memory for write operations. The write driver adjustment circuit includes a mimic write driver configured to provide a mimic write current that mimics the write current provided to the resistive memory. The mimic write current is applied to a mimic resistive memory that contains mimic resistive memory elements that mimic a resistance distribution of the resistive memory. When the mimic write current is applied, a mimic voltage is generated across the mimic resistive memory elements. The write driver adjustment circuit is configured to adjust the write current based on the mimic voltage so that the write current is sufficient for write operations, but low enough to reduce breakdown.
Abstract:
A memory has a plurality of non-volatile resistive (NVR) memory arrays, each with an associated reference voltage generating circuit coupled by a reference circuit coupling link to a reference line, the reference coupled to a sense amplifier for that NVR memory array. Reference line coupling links couple the reference lines of different NVR memory arrays. Optionally, different ones of the reference coupling links are removed or opened, obtaining respective different average and isolated reference voltages on the different reference lines. Optionally, different ones of the reference circuit coupling links are removed or opened, obtaining respective different averaged voltages on the reference lines, and uncoupling and isolating different reference circuits.
Abstract:
Aspects disclosed in the detailed description include write driver circuits for resistive random access memory (RAM) arrays. In one aspect, a write driver circuit is provided to facilitate writing data into a resistive RAM array in a memory system. The write driver circuit is coupled to a selector circuit configured to select a memory bitcell(s) in the resistive RAM array for a write operation. An isolation circuit is provided in the write driver circuit to couple a current source to the selector circuit to provide a write voltage during the write operation and to isolate the current source from the selector circuit when the selector circuit is not engaged in the write operation. By isolating the selector circuit from the current source when the selector circuit is on standby, it is possible to reduce leakage current in the selector circuit, thus reducing standby power consumption in the memory system.
Abstract:
Systems and methods relate to a read operation on a magnetoresistive random access memory (MRAM). Prior to determining whether there is a hit in the MRAM for a first address corresponding to the read operation, a dummy word line is activated, based on at least a subset of bits of the first address. A settling process for a reference voltage for reading MRAM bit cells at the first address is initiated, based on dummy cells connected to the dummy word line and a settled reference voltage is obtained. If there is a hit, a first word line is activated based on a row address determined from the first address, and the MRAM bit cells at the first address are read using the settled reference voltage.
Abstract:
A resistance-based memory includes a two-diode access device. In a particular embodiment, a method includes biasing a bit line with a first voltage. The method further includes biasing the sense line with a second voltage. Biasing the bit line and biasing the sense line generates a current through a resistance-based memory element and through one of a first diode and a second diode. A cathode of the first diode is coupled to the bit line and an anode of the second diode is coupled to the sense line.
Abstract:
A method includes thinning a back-side of a substrate to expose a portion of a first via that is formed in the substrate. The method also includes forming a first diode at the back-side of the substrate. The first diode is coupled to the first via.
Abstract:
A large scale memory array includes a uniform pattern of uniformly sized dummy bit cells and active bit cells. Sub-arrays within the large scale memory array are separated by the dummy bit cells. Signal distribution circuitry is formed with a width or height corresponding to the width or height of the dummy bit cells so that the signal distribution circuitry occupies the same footprint as the dummy bit cells without disrupting the uniform pattern across the large scale array. Edge dummy cells of a similar size or larger than the standard size bit cells may be placed around the edge of the large scale array to further reduce pattern loading affects.