Abstract:
An apparatus includes a substrate and an interposer associated with the substrate. The apparatus further includes a first device disposed within the substrate or within the interposer and a second device disposed within the interposer. The first device and the second device are arranged in a stacked configuration.
Abstract:
A method includes thinning a back-side of a substrate to expose a portion of a first via that is formed in the substrate. The method also includes forming a first diode at the back-side of the substrate. The first diode is coupled to the first via.
Abstract:
A semiconductor die including strain relief for through substrate vias (TSVs). A method for strain relief of TSVs includes defining a through substrate via cavity in a substrate. The method also includes depositing an isolation layer in the cavity. The method further includes filling the cavity with a conductive material. The method also includes removing a portion of the isolation layer to create a recessed portion.
Abstract:
Some implementations provide a die that includes a magnetoresistive random access memory (MRAM) cell array that includes several MRAM cells. The die also includes a first ferromagnetic layer positioned above the MRAM cell array, a second ferromagnetic layer positioned below the MRAM cell array, and several vias positioned around at least one MRAM cell. The via comprising a ferromagnetic material. In some implementations, the first ferromagnetic layer, the second ferromagnetic layer and the several vias define a magnetic shield for the MRAM cell array. The MRAM cell may include a magnetic tunnel junction (MTJ). In some implementations, the several vias traverse at least a metal layer and a dielectric layer of the die. In some implementations, the vias are through substrate vias. In some implementations, the ferromagnetic material has high permeability and high B saturation.
Abstract:
Some implementations provide a die that includes a magnetoresistive random access memory (MRAM) cell array that includes several MRAM cells. The die also includes a first ferromagnetic layer positioned above the MRAM cell array, a second ferromagnetic layer positioned below the MRAM cell array, and several vias positioned around at least one MRAM cell. The via comprising a ferromagnetic material. In some implementations, the first ferromagnetic layer, the second ferromagnetic layer and the several vias define a magnetic shield for the MRAM cell array. The MRAM cell may include a magnetic tunnel junction (MTJ). In some implementations, the several vias traverse at least a metal layer and a dielectric layer of the die. In some implementations, the vias are through substrate vias. In some implementations, the ferromagnetic material has high permeability and high B saturation.
Abstract:
Devices and methods to reduce parasitic capacitance are disclosed. A device may include a dielectric layer. The device may include first and second conductive structures and an etch stop layer proximate to the dielectric layer. The etch stop layer may define first and second openings proximate to a region of the dielectric layer between the first and second conductive structures. The device may include first and second airgaps within the region. The device may include a layer of material proximate to (e.g., on, above, or over) the etch stop layer. The layer of material proximate to the etch stop layer may cover the first and second airgaps.
Abstract:
Devices and methods to reduce parasitic capacitance are disclosed. A device may include a dielectric layer. The device may include first and second conductive structures and an etch stop layer proximate to the dielectric layer. The etch stop layer may define first and second openings proximate to a region of the dielectric layer between the first and second conductive structures. The device may include first and second airgaps within the region. The device may include a layer of material proximate to (e.g., on, above, or over) the etch stop layer. The layer of material proximate to the etch stop layer may cover the first and second airgaps.
Abstract:
In a particular embodiment, an apparatus includes a stress sensor located on a first side of a semiconductor device. The apparatus further includes circuitry located on a second side of the semiconductor device. The stress sensor is configured to detect stress at the semiconductor device. In another particular embodiment, a method includes receiving data from a stress sensor located on a first side of a packaged semiconductor device. The packaged semiconductor device includes circuitry located on a second side of the packaged semiconductor device. The data indicates stress detected by the stress sensor. The method further includes performing a test associated with the packaged semiconductor device based on the data.
Abstract:
A method includes thinning a back-side of a substrate to expose a portion of a first via that is formed in the substrate. The method also includes forming a first diode at the back-side of the substrate. The first diode is coupled to the first via.
Abstract:
A device includes a conductive via to provide an electrical path through a substrate. The device further includes a conductive element. The device further includes a fuse coupled to the conductive via and coupled to the conductive element to provide a conductive path between the conductive via and the conductive element. The conductive path enables testing of continuity of at least a portion of the conductive via. The fuse is configured to be disabled after the testing of the continuity of the conductive via.