Abstract:
An advanced metal-nitride-oxide-silicon (MNOS) multiple time programmable (MTP) memory is provided. In an example, an apparatus includes a two field effect transistor (2T field FET) metal-nitride-oxide-silicon (MNOS) MTP memory. The 2T field FET MNOS MTP memory can include an interlayer dielectric (ILD) oxide region that is formed on a well and separates respective gates of first and second transistors from the well. A control gate is located between the respective gates of the first and second transistors, and a silicon-nitride-oxide (SiN) region is located between a metal portion of the control gate and a portion of the ILD oxide region.
Abstract:
Semiconductor interconnects and methods for making semiconductor interconnects. An interconnect may include a first via of a first conductive material between a first conductive interconnect layer and a first middle of line (MOL) interconnect layer. The first MOL interconnect layer is on a first level. The first via is fabricated with a single damascene process. Such a semiconductor interconnect also includes a second via of a second conductive material between the first conductive interconnect layer and a second MOL interconnect layer. The second MOL interconnect layer is on a second level. The second via is fabricated with a dual damascene process. The first conductive material is different than the second conductive material.
Abstract:
Systems and methods are directed to an integrated circuit comprising a reduced height M1 metal line formed of an exemplary material with lower mean free path than Copper, for local routing of on-chip circuit elements of the integrated circuit, wherein the height of the reduced height M1 metal line is lower than a minimum allowed or allowable height of a conventional M1 metal line formed of Copper. The exemplary materials for forming the reduced height M1 metal line include Tungsten (W), Molybdenum (Mo), and Ruthenium (Ru), wherein these exemplary materials also exhibit lower capacitance and lower RC delays than Copper, while providing high electromigration reliability.
Abstract:
Methods for integrating heterogeneous channel material into a semiconductor device, and semiconductor devices that integrate heterogeneous channel material. A method for fabricating a semiconductor device includes processing a first substrate of a first material at a first thermal budget to fabricate a p-type device. The method further includes coupling a second substrate of a second material to the first substrate. The method also includes processing the second substrate to fabricate an n-type device at a second thermal budget that is less than the first thermal budget. The p-type device and the n-type device may cooperate to form a complementary device.
Abstract:
Disclosed are packages that may include first and second substrates with first and second chips therebetween. The first chip may be a logic chip and the second chip may be a processing near memory (PNM) chip. The active side of the first chip may face the first substrate and the active side of the second chip may face the second substrate. The first chip may be encapsulated by a first mold, and the second chip may be encapsulated by a second mold. The first and/or the second molds may be thermally conductive. A third chip (e.g., a memory) may be on the second substrate opposite the second chip. The second substrate may include very short vertical connections that connect the active sides of the second and third chips.
Abstract:
Disclosed are integrated circuit structures with buried rails and backside metals for routing input signals to and/or output signals from one or more cells of the integrated circuit structures. Port landing-free connections to input ports and/or from output ports are enabled. As a result, signal routing flexibility is enhanced.
Abstract:
Certain aspects provide an apparatus for performing machine learning tasks, and in particular, to computation-in-memory architectures. One aspect provides a method for in-memory computation. The method generally includes: accumulating, via each digital counter of a plurality of digital counters, output signals on a respective column of multiple columns of a memory, wherein a plurality of memory cells are on each of the multiple columns, the plurality of memory cells storing multiple bits representing weights of a neural network, wherein the plurality of memory cells of each of the multiple columns correspond to different word-lines of the memory; adding, via an adder circuit, output signals of the plurality of digital counters; and accumulating, via an accumulator, output signals of the adder circuit.
Abstract:
Certain aspects provide a circuit for in-memory computation. The circuit generally includes an in-memory computation array having a plurality of computation circuits, each of the computation circuits being configured to perform a dot product computation. In certain aspects, each of the computation circuits includes a memory cell, a capacitive element, a precharge transistor coupled between an output of the memory cell and the capacitive element, and a read transistor coupled between a read bit line (RBL) and the capacitive element.
Abstract:
A charge sharing Compute In Memory (CIM) may comprise an XNOR bit cell with an internal capacitor between the XNOR output node and a system voltage. Alternatively, a charge sharing CIM may comprise an XNOR bit cell with an internal capacitor between the XNOR output node and a read bit line. Alternatively, a charge sharing CIM may comprise an XNOR bit cell with an internal cap between XNOR and read bit line with a separate write bit line and write bit line bar.
Abstract:
A semiconductor device for a one-time programmable (OTP) memory according to some examples of the disclosure includes a gate, a dielectric region below the gate, a source terminal below the dielectric region and offset to one side, a drain terminal below the dielectric region and offset to an opposite side from the source terminal, a drain side charge trap in the dielectric region capable of programming the semiconductor device, and a source side charge trap in the dielectric region opposite the drain side charge trap and capable of programming the semiconductor device.