Abstract:
One object is to provide a new electronic device which is configured so that a user can read data regardless of a location, input data by directly touching a keyboard displayed on a screen or indirectly touching the keyboard with a stylus pen or the like, and use the input data. A first transistor electrically connected to a reflective electrode and a photo sensor are included over one substrate. A touch-input button displayed on a first screen region of the display portion is displayed as a still image, and a video signal is output so that a moving image is displayed on a second screen region of the display portion. A video signal processing portion supplying different signals between the case where a still image is displayed on the display portion and the case where a moving image is displayed on the display portion is included.
Abstract:
A transmitter device is provided. The transmitter device includes first to m-th memory cells (m is an integer of 2 or more), first to m-th word lines, a first bit line, and an analog circuit. The i-th word line (i is an integer greater than or equal to 1 and less than or equal to m) is electrically connected to the i-th memory cell. The first to m-th memory cells are electrically connected to the analog circuit through the first bit line. The first to m-th memory cells are capable of retaining a potential corresponding to first data. The first to m-th word lines are supplied with a potential corresponding to second data. The analog circuit is capable of performing a multiply-accumulate operation on the first data and the second data, and the first data or the second data includes image data.
Abstract:
To provide a solid-state imaging device with short image-capturing duration. A first photodiode in a pixel in an n-th row and an m-th column is connected to a second photodiode in a pixel in an (n+1)-th row and the m-th column through a transistor. The first photodiode and the second photodiode receive light concurrently, the potential in accordance with the amount of received light is held in a pixel in the n-th row and the m-th column, and the potential in accordance with the amount of received light is held in a pixel in the (n+1)-th row and the m-th column without performing a reset operation. Then, each potential is read out. Under a large amount of light, either the first photodiode or the second photodiode is used.
Abstract:
An imaging device which does not include a color filter and does not need arithmetic processing using an external processing circuit is provided. A first circuit includes a first photoelectric conversion element, a first transistor, and a second transistor; a second circuit includes a second photoelectric conversion element, a third transistor, and a fourth transistor; a third circuit includes a fifth transistor, a sixth transistor, a seventh transistor, and a second capacitor; the spectroscopic element is provided over the first photoelectric conversion element or the second photoelectric conversion element; and the first circuit and the second circuit is connected to the third circuit through a first capacitor.
Abstract:
An imaging device with excellent imaging performance is provided. The imaging device has a first circuit including a first photoelectric conversion element and a second circuit including a second photoelectric conversion element. The second circuit is shielded from light. In the imaging device, a current mirror circuit in which a transistor connected to the second photoelectric conversion element serves as an input transistor and a transistor connected to the first photoelectric conversion element serves as an output transistor is formed. With such a configuration, the amount of photocurrent in the first circuit from which the contribution of the dark current of the first photoelectric conversion element has been excluded can be detected.
Abstract:
A low power consumption semiconductor device is provided. The semiconductor device includes a decoder, a signal generation circuit, and a display device. The decoder includes an analysis circuit and an arithmetic circuit. The analysis circuit has a function of determining whether to decode the received first image data using the received data. The signal generation circuit has a function of generating a signal including an instruction on whether to decode the first image data in response to the determination of the analysis circuit. The arithmetic circuit has a function of decoding the first image data in response to the signal. The display device has a function of maintaining a second image displayed on the display device in the case where the first image data is not decoded in the arithmetic circuit.
Abstract:
An oscillator capable of quick startup is provided. A transistor is provided between an output terminal of a certain stage inverter and an input terminal of the following stage inverter included in the voltage controlled oscillator. With the use of the on resistance of the transistor, the oscillation frequency of the clock signal is controlled. While supply of the power supply voltage is stopped, a signal that is input to the input terminal of the inverter just before supply of the power supply voltage is stopped is stored by turning off the transistor. This operation makes it possible to immediately output a clock signal that has the same frequency as that before supply of the power supply voltage is stopped at the time when the power supply voltage is supplied again.
Abstract:
A solid-state imaging device with high productivity and improved dynamic range is provided. In the imaging device including a photoelectric conversion element having an i-type semiconductor layer, functional elements, and a wiring, an area where the functional elements and the wiring overlap with the i-type semiconductor in a plane view is preferably less than or equal to 35%, further preferably less than or equal to 15%, and still further preferably less than or equal to 10% of the area of the i-type semiconductor in a plane view. Plural photoelectric conversion elements are provided in the same semiconductor layer, whereby a process for separating the respective photoelectric conversion elements can be reduced. The respective i-type semiconductor layers in the plural photoelectric conversion elements are separated by a p-type semiconductor layer or an n-type semiconductor layer.
Abstract:
To provide a semiconductor device with a small circuit size and low power consumption or an electronic device including the semiconductor device and compressing a large volume of image data. A semiconductor device of a Hopfield neural network is formed using neuron circuits and synapse circuits. The synapse circuit includes an analog memory and a writing control circuit, and the writing control circuit is formed using a transistor including an oxide semiconductor in a channel formation region. Thus, data retention lifetime of the analog memory can be extended and refresh operation for data retention can be omitted, so that power consumption of the semiconductor device can be reduced. The semiconductor device enables judgement whether learned image data and arbitrary image data match, are similar, or mismatch by comparing video data. Thus, motion compensation prediction, which is one of data compression methods, can be employed for image data.
Abstract:
A semiconductor in which the area of a circuit that is unnecessary during normal operation is small is provided. A semiconductor device including a first circuit has a function of storing a start-up routine in the first circuit and executing the start-up routine, a function of operating the first circuit as a buffer memory device after executing the start-up routine, and a function of loading the start-up routine into the first circuit from outside before the semiconductor device is powered off.