摘要:
Semiconductor device manufacturing methods and methods of forming insulating material layers are disclosed. In one embodiment, a method of forming a composite insulating material layer of a semiconductor device includes providing a workpiece and forming a first sub-layer of the insulating material layer over the workpiece using a first plasma power level. A second sub-layer of the insulating material layer is formed over the first sub-layer of the insulating material layer using a second plasma power level, and the workpiece is annealed.
摘要:
A semiconductor product has different active thicknesses of silicon on a single semiconductor substrate. The thickness of the silicon layer is changed either by selectively adding silicon or subtracting silicon from an original layer of silicon. The different active thicknesses are suitable for use in different types of devices, such as diodes and transistors.
摘要:
A method of detecting silicide encroachment to the sidewalls of a gate electrode includes forming silicide at a device, with sidewall spacers defining a desired separation of the silicide from the sidewalls of the gate electrode. After silicide formation, the sidewall spacers are removed and line-of-sight monitoring is performed of the region previously obscured by the sidewall spacers, thereby permitting detection of silicide encroachment.
摘要:
The present invention is directed to a method of forming process layers comprised of silicon oxynitride. In one embodiment, the method comprises positioning a wafer in a process chamber, introducing silane and nitrous oxide into the chamber at a flow rate ratio ranging from approximately 2.6-3.8 silane to nitrous oxide, and generating a plasma in the chamber using a high frequency to low frequency power setting ratio ranging from approximately 1.2-1.8.
摘要:
An ultrathin gate dielectric and a method for forming the same are provided. The gate dielectric is believed to allow enhanced performance of semiconductor devices including transistors and dual-gate memory cells. A low-power, low-pressure plasma-enhanced chemical vapor deposition (PECVD) method employing silane and nitrous oxide sources is used to deposit the dielectric. As compared to conventional PECVD deposition, the method uses lower silane and nitrous oxide flow rates, a more dilute silane in nitrogen mixture, a lower chamber pressure, and a lower radio frequency power density. These settings allow plasma conditions to stabilize so that deposition may be performed in time increments at least as short as 0.1 second, so that oxide thicknesses at least as small as one angstrom may be controllably deposited. The oxide is preferably deposited in portions at multiple substrate mounting positions in a deposition chamber. Combination of oxide portions in this manner is believed to reduce the density of pinholes in the oxide, and the low-power, low-pressure deposition conditions are further believed to reduce plasma damage to the oxide and reduce the density of trap states in the oxide. A rapid thermal anneal of the oxide may be performed after deposition, and may improve the quality of the interface between the oxide and the underlying semiconductor substrate.
摘要:
A semiconductor device is provided and formed using self-aligned metal-containing gates within a metal-oxide semiconductor (MOS) process. After forming junction regions within a semiconductor substrate, the gate conductor, or junction implant alignment structure, is at least partially removed to form a trench within a dielectric formed above the substrate. Upper surfaces of the transistor, except the upper surface of the gate conductor, are thereby protected by the dielectric. A metal-containing material can then be arranged within the trench, i.e., in the region removed of the gate conductor. The metal material can be formed either as a single layer or as multiple metal and/or dielectric layers interposed throughout the as-filled trench. The metal-filled trench formation occurs after high temperature cycles often associated with activating the previously implanted junctions or growing gate dielectrics. Thus, low-temperature metals such as copper or copper alloys can be used.
摘要:
A method of forming a semiconductor device by using a pillar to form a contact with an active region of the device. A semiconductor device is formed by forming one or more active regions on a substrate of the semiconductor device and forming a pillar over at least a portion of one of the active regions. An insulating film selective to the pillar is provided over portions of the substrate adjacent the pillar. The pillar is then used to form a conductive contact with the active region over which it is formed. In one embodiment, the pillar is formed from a photoresist, while in other embodiments, the pillar is formed from a conductor material such as a metal. The active region may form a source/drain region or a gate electrode.
摘要:
This description relates to a gate electrode of a field effect transistor. An exemplary structure for a field effect transistor includes a substrate; a gate electrode over the substrate including a first top surface and a sidewall; a source/drain (S/D) region at least partially disposed in the substrate on one side of the gate electrode; a spacer on the sidewall distributed between the gate electrode and the S/D region; and a contact etch stop layer (CESL) adjacent to the spacer and further comprising a portion extending over the S/D region, wherein the portion has a second top surface substantially coplanar with the first top surface.
摘要:
A method for forming different active thicknesses on the same silicon layer includes masking the silicon layer and exposing selected regions of the silicon layer. The thickness of the silicon layer at the exposed regions is changed, either by adding silicon or subtracting silicon from the layer at the exposed regions. Once the mask is removed, the silicon layer has regions of different active thicknesses, respectively suitable for use in different types of devices, such as diodes and transistors.
摘要:
A stressed semiconductor structure including at least one FinFET device on a surface of a substrate, typically a buried insulating layer of an initial semiconductor-on-insulator substrate, is provided. In a preferred embodiment, the at least one FinFET device includes a semiconductor Fin that is located on an unetched portion of the buried insulator layer which has a raised height as compared to an adjacent and adjoining etched portion of the buried insulating layer. The semiconductor Fin includes a gate dielectric on its sidewalls and optionally a hard mask located on an upper surface thereof. The inventive structure also includes a gate conductor, which is located on the surface of the substrate, typically the buried insulating layer, and the gate conductor is at least laterally adjacent to the gate dielectric located on the sidewalls of the semiconductor Fin. A stressed silicide is located on the gate conductor, which introduces stress into the channel of the FinFET device. The stressed silicide memorizes the stress from a sacrificial stressed film that is formed prior to forming the stressed silicide. The stress type of the stressed film is introduced into the silicide during a silicide anneal step.