Abstract:
An internal combustion engine incorporating rest cylinders is provided which does not need a high response performance when operating a throttle valve and which can eliminate engine output variations as the number of operable cylinders changes. In the internal combustion engine, some of a plurality of cylinders is configured to rest during normal operation of the engine. The cylinders are divided into a plurality of cylinder groups, and each of the cylinders is provided with an independent throttle valve. An ECU for increasing the number of operative cylinder groups according to at least the throttle handgrip opening is provided. Also provided are motors for bringing the throttle valves in the cylinder in the rest state into a fully closed state on the basis of each cylinder group, a throttle valve position sensor, and the like.
Abstract:
The invention provides a multi-cylinder engine wherein, even where it is structured such that a cam chain case is provided on a side portion of the engine, a working fluid supply path can be simplified and the weight and size of a cylinder head reduced. According to the invention, a multi-cylinder engine is provided wherein at least one of a plurality of engine valves of a cylinder head can be cut off from its corresponding combustion chambers such that a first intake valve, a second intake valve, a first exhaust valve, and a second exhaust valve are positioned on the opposite side to a cam chain case.
Abstract:
In a multi-cylinder internal combustion engine having throttle valves to be opened and closed by electric motors, output control is enabled in various ways according to the state of usage of an object to be driven by the multi-cylinder internal combustion engine with a simple structure with the scope of application of shared components being expanded to reduce the cost. In addition, a throttle body assembly is downsized in the direction of the arrangement of the cylinders. A multi-cylinder internal combustion engine includes a predetermined number of cylinders, a throttle body assembly including the throttle bodies formed with intake-air channels and throttle valves. The respective throttle valves are opened and closed by the electric motors provided independently for each throttle valve. Air-intake ports of the first and fourth cylinders are formed so as to approach a center plane in the direction of the arrangement as they approach entrances.
Abstract:
To provide an internal combustion engine that can generate a strong swirl by increasing the amount of intake air for generating the swirl in a simple structure. In the internal combustion engine provided with a cylinder head formed with an air intake port having first and second ports, when a second intake valve for opening and closing the second port is brought into a halted state by a valve halting mechanism, a swirl is generated by intake air flowing through the first port in a combustion chamber. At a first inlet slot, the line of intersection between a first plane, which is a plan including the first inlet slot and a first orthogonal plane inclines upwardly as it approaches from the position near the outer periphery of the combustion chamber towards a second reference plane, and the first port includes a port section having a passage shape which extends substantially along a perpendicular line orthogonal to a first plane from the first inlet slot towards the upstream by a predetermined length of the passage in a plan view.
Abstract:
A valve pause mechanism of a four-stroke internal combustion engine includes a valve pause mechanism. A valve lifter fitted between a valve cam and a valve stem of a poppet valve is always pressed in a direction in which the valve lifter contacts the valve cam with a lifter spring. However, a slide pin is fitted into a slide pin holder fitted in the valve lifter so that a slide pin can slide in a direction perpendicular to the valve stem. A stem working face in contact with the valve stem of the poppet valve and a stem through hole that the valve stem pierces are both adjacently formed in the slide pin and a slide pin driving mechanism. The slide pin driving mechanism selectively makes the stem working face and the stem through hole face the valve stem by moving the slide pin. A side of the slide pin at the back of the stem working face is chamfered across the stem through hole. A plane perpendicular to the central axis of the stem through hole is formed in a chamfered part and its both ends in a direction of the central axis of the slide pin continue to the peripheral surface of the slide pin in a smooth curve. The aforementioned arrangement provides a valve pause mechanism with a durable, relatively light slide pin.
Abstract:
An air intake control system is provided for an internal combustion engine of a vehicle. The control system includes an intake port of a cylinder head for an engine main body, a throttle body having a throttle valve and connected to the intake port, an electric actuator having an electric motor and arranged on the throttle body to drive open or close the throttle valve, and a connector disposed on a housing of the electric actuator in a position facing toward one axial end of a crankshaft. The connector is provided in order to connect to an outside conductor to the electric motor of the electric actuator. The resulting configuration facilitates the work to connecting the outside conductor to the connector.
Abstract:
In a multi-cylinder internal combustion engine, a hydraulic valve rest mechanism is mounted on a valve operating device, which performs open-close driving of an engine valve which is arranged in a cylinder head of an engine body having a plurality of cylinders in an openable-and-closable manner. The hydraulic valve rest mechanism is operated with an oil pressure that is controlled by a hydraulic control device so as to close and rest engine valves of a plurality of cylinders for bringing the cylinders into a rest state Therefore, the miniaturization of the multi-cylinder internal combustion engine along an axis of a crankshaft and can shorten a length of an oil passage which connects a hydraulic valve rest mechanism and a hydraulic control device. A hydraulic control device is arranged on an engine body directly above a portion thereof corresponding to a cylinder that is expected to assume a cylinder rest state.
Abstract:
A V-type vehicle engine includes a main engine body with a front bank with a rear bank defining a V-type structure. A plurality of valve actuation units are respectively located in valve chambers in the front bank and the rear bank, to minimize the size of a cylinder head and a cylinder head cover in at least one of the front bank and the rear bank. A first valve actuation unit, with a double overhead camshaft structure having intake-side and exhaust-side camshafts individually corresponding to the intake valve and the exhaust valve, is located in a valve chamber in one of the front bank and the rear bank. A second valve actuation unit, having a common single camshaft for the intake valve and the exhaust valve, is located in a valve chamber in the other one of the front bank and the rear bank.
Abstract:
A multicylinder internal combustion engine, which can simplify its control and is advantageous against thermal loads or vibrations includes a cylinder head with intake valves and exhaust valves arranged therein. Valve actuators are provided for openably operating the intake valves and exhaust valves, respectively. A cylinder head cover forms, in combination with the cylinder head, a valve actuator chamber with the valve actuators accommodated therein. At least some of the valve actuators are deactivatable to disable their corresponding cylinders. The multicylinder internal combustion engine is a V-shaped internal combustion engine provided with a front bank and rear bank. The cylinders on opposite ends in a direction of a crankshaft are set as full-time operating cylinders.
Abstract:
An air intake control system is provided for an internal combustion engine of a vehicle. The control system includes an intake port of a cylinder head for an engine main body, a throttle body having a throttle valve and connected to the intake port, an electric actuator having an electric motor and arranged on the throttle body to drive open or close the throttle valve, and a connector disposed on a housing of the electric actuator in a position facing toward one axial end of a crankshaft. The connector is provided in order to connect to an outside conductor to the electric motor of the electric actuator. The resulting configuration facilitates the work to connecting the outside conductor to the connector.