摘要:
A drive circuit for driving a semiconductor element is equipped with: a first switch connected to a positive side of a DC power supply; a second switch connected to the other terminal of the first switch and to a negative side of the DC power supply; a third switch connected to the positive side of the DC power supply; a fourth switch connected to the other terminal of the third switch; a fifth switch connected to the other terminal of the fourth switch and to the negative side of the DC power supply; and a capacitor connected to the other terminal of the first switch and to the other terminal of the fourth switch. A gate of the semiconductor element is connected to the other terminal of said third switch; and a source of the semiconductor element is connected to the negative side of the DC power supply.
摘要:
An opening-closing device is capable of automatically positioning an opened pressing mechanism horizontally in relation to a supporting table. A base member is provided for fixation to a body of an apparatus on which the pressing mechanism is to be used. A supporting member is secured pivotably to the base member and a lifting member is provided to which a rear portion of the pressing mechanism is fixed to a free end of the supporting member with a supporting pin reversibly in a direction in which the lifting member will overlap the supporting member. An elastic member forces the supporting member along with the lifting member in the opening direction of the pressing mechanism while forcing the lifting member in a direction in which the lifting member will overlap the supporting member. The opening-closing device further has a mechanism for limiting to a predetermined range, the range of the lifting member being reversible about the pivoted position relative to the supporting member and an adjusting mechanism abutting a part of the base member or the apparatus body to reverse the lifting member.
摘要:
In the light emitting element comprising an n-type semiconductor substrate, a lower electrode formed on the lower surface of the substrate, and a light emitting part having a pn junction, which is composed of an InGaAlP compound semiconductor material, a p-type current diffusing layer and an upper electrode which are laminated on the upper surface of the substrate in that order from the substrate side, the improvement wherein a carrier concentration of the current diffusing layer is lower on a light emitting part side thereof than that on an upper electrode side thereof, and at least the upper electrode side of the current diffusing layer is composed of GaP. By employing such structure, diffusion of the dopant to a light emitting part can be suppressed even when the carrier concentration of the upper part of the current diffusing layer is set to be higher, thereby affording a lower resistance of the current diffusing layer as a whole. The GaP being a compound semiconductor without Al, the amount of the dopant necessary for affording the superior effects of suppressing the diffusion of the dopant to the light emitting part can be less. Consequently, the luminous efficiency can be improved as compared with conventional ones, and a light emitting element having a long service life and superior reliability can be obtained.
摘要:
A semiconductor light emitting element comprising a light emitting part comprising an AlGaInP active layer and a AlGaInP cladding layer, which is formed on a GaAs substrate, and an AlGaAs layer and a Ga.sub.x In.sub.1-x P layer (0.7.ltoreq.x.ltoreq.1.0) deposited in this order on said light emitting part, wherein said Ga.sub.x In.sub.1-x P layer has a thickness of not more than 1.0 .mu.m. According to the present invention, absorption of the emitted light by an electrode contact layer and the occurrence of an interfacial distortion between the electrode contact layer and the layer thereunder can be suppressed, and a semiconductor light emitting element permitting easy production thereof and having a high luminance and a long service life can be provided.
摘要:
A salt composition is provided for preventing excess intake of salt (sodium chloride) and achieving a well balanced intake of minerals. The composition which is used in the place of conventional table salt consists essentially of 100 parts by weight of a mixture containing 30 to 75% by weight of sodium chloride and 25 to 70% by weight of sylvinite admixed with 5 to 60 parts by weight of a citrate. Seasonings, such as soybean paste and soy sauce, and foods, such as pickles and kimchi, can be prepared with such a salt composition.
摘要:
There is provided a semiconductor device in which a wiring inductance of a DC/DC converter formed on a multi-layered wiring substrate can be reduced and the characteristics can be improved. In the semiconductor device, in an input-side capacitor, one capacitor electrode is electrically connected to a power-supply pattern between a control power MOSFET and a synchronous power MOSFET, and the other capacitor electrode is electrically connected to a ground pattern therebetween. The multi-layered wiring substrate includes: a via conductor arranged at a position of the one capacitor electrode for electrically connecting among a plurality of power-supply patterns in a thickness direction; and a via conductor arranged at a position of the other capacitor electrode for electrically connecting among a plurality of ground patterns in a thickness direction.
摘要:
A technique for suppressing lowering of withstand voltage and lowering of breakdown resistance and reducing a feedback capacitance of a power MISFET is provided. A lateral power MISFET that comprises a trench region whose insulating layer is formed shallower than an HV-Nwell layer is provided in the HV-Nwell layer (drift region) formed on a main surface of a semiconductor substrate in a direction from the main surface to the inside. The lateral power MISFET has an arrangement on a plane of the main surface including a source layer (source region) and a drain layer (drain region) arranged at opposite sides to each other across a gate electrode (first conducting layer), and a dummy gate electrode (second conducting layer) that is different from the gate electrode is arranged between the gate electrode and the drain layer.
摘要:
The semiconductor device is included in the LED driving circuit (current regulator) of driving the LED array (with series-connected number m×parallel-connected number n), and is formed of a plurality (n pieces) of LED driving devices of controlling a current (constant-current driving) flowing in each string. A vertical semiconductor device, for example, a vertical MOSFET is used as the LED driving device. Both of a main device functioning as a constant-current driving device and a subsidiary device functioning as a circuit-breaking switch during dimming are formed inside a chip of the device, which are formed of the vertical semiconductor devices. In a first surface of the device, each source region of the main device and the subsidiary device is formed so as to be insulated from each other through an isolation region.
摘要:
In a semiconductor device, a high-side driver is arranged in a region closer to a periphery of a semiconductor substrate than a high-side switch, and a low-side driver is arranged in a region closer to the periphery of the semiconductor substrate than the low-side switch. By this means, a path from a positive terminal of an input capacitor to a negative terminal of the input capacitor via the high-side switch and the low-side switch is short, a path from a positive terminal of a drive capacitor to a negative terminal of the drive capacitor via the low-side driver is short, and a path from a positive terminal of a boot strap capacitor to a negative terminal of the boot strap capacitor via the high-side driver is short, and therefore, the parasitic inductance can be reduced, and the conversion efficiency can be improved.
摘要:
In a non-isolated DC/DC converter, a reference potential for a low-side pre-driver which drives a gate of a low-side MOSFET is applied from a portion except for a main circuit passing through a high-side MOSFET and the low-side MOSFET so that a parasitic inductance between a source of the low-side MOSFET and the pre-driver is increased without increasing the sum of parasitic inductances in the main circuit and negative potential driving of the gate of the low-side MOSFET can be performed and a self turn-on phenomenon can be prevented without adding any member and changing drive system.