摘要:
An inorganic material based surface-mediated cell (SMC) comprising (a) a cathode comprising a non-carbon-based inorganic cathode active material having a surface area to capture and store lithium thereon; (b) an anode comprising an anode current collector alone or both an anode current collector and an anode active material; (c) a porous separator; (d) a lithium-containing electrolyte in physical contact with the two electrodes, wherein the cathode has a specific surface area no less than 100 m2/g which is in direct physical contact with said electrolyte to receive lithium ions therefrom or to provide lithium ions thereto; and (e) a lithium source. This inorganic SMC provides both high energy density and high power density not achievable by supercapacitors and lithium-ion cells.
摘要:
A dual electroplating cell comprising: (a) an electrolyte component containing therein ions of a first metal; (b) a porous cathode current collector having surface areas to capture and store metal ions directly thereon, wherein the cathode current collector has a specific surface area greater than 100 m2/g that is in direct contact with said electrolyte; (c) a porous anode current collector having surface areas to capture and store metal ions thereon, wherein the anode current collector has a specific surface area greater than 100 m2/g that is in direct contact with the electrolyte; (d) a porous separator disposed between the anode and the cathode; and (e) an ion source of the first metal disposed in the anode current collector or the cathode current collector and in electronic contact therewith to obtain an open circuit voltage (OCV) from 0.3 volts to 3.5 volts when the cell is made.
摘要:
The present invention provides a multi-component hybrid electrode for use in an electrochemical super-hybrid energy storage device. The hybrid electrode contains at least a current collector, at least an intercalation electrode active material storing lithium inside interior or bulk thereof, and at least an intercalation-free electrode active material having a specific surface area no less than 100 m2/g and storing lithium on a surface thereof, wherein the intercalation electrode active material and the intercalation-free electrode active material are in electronic contact with the current collector. The resulting super-hybrid cell exhibits exceptional high power and high energy density, and long-term cycling stability that cannot be achieved with conventional supercapacitors, lithium-ion capacitors, lithium-ion batteries, and lithium metal secondary batteries.
摘要:
A method of operating a lithium-ion cell comprising (a) a cathode comprising a carbon or graphitic material having a surface area to capture and store lithium thereon; (b) an anode comprising an anode active material; (c) a porous separator disposed between the two electrodes; (d) an electrolyte in ionic contact with the two electrodes; and (e) a lithium source disposed in at least one of the two electrodes to obtain an open circuit voltage (OCV) from 0.5 volts to 2.8 volts when the cell is made; wherein the method comprises: (A) electrochemically forming the cell from the OCV to either a first lower voltage limit (LVL) or a first upper voltage limit (UVL), wherein the first LVL is no lower than 0.1 volts and the first UVL is no higher than 4.6 volts; and (B) cycling the cell between a second LVL and a second UVL.
摘要:
A magnesium-ion cell comprising (a) a cathode comprising a carbon or graphitic material as a cathode active material having a surface area to capture and store magnesium thereon, wherein the cathode forms a meso-porous structure having a pore size from 2 nm to 50 nm and a specific surface area greater than 50 m2/g; (b) an anode comprising an anode current collector alone or a combination of an anode current collector and an anode active material; (c) a porous separator disposed between the anode and the cathode; (d) electrolyte in ionic contact with the anode and the cathode; and (e) a magnesium ion source disposed in the anode to obtain an open circuit voltage (OCV) from 0.5 volts to 3.5 volts when the cell is made.
摘要:
A lithium-ion cell comprising: (A) a cathode comprising graphene as the cathode active material having a surface area to capture and store lithium thereon and wherein said graphene cathode is meso-porous having a specific surface area greater than 100 m2/g; (B) an anode comprising an anode active material for inserting and extracting lithium, wherein the anode active material is mixed with a conductive additive and/or a resin binder to form a porous electrode structure, or coated onto a current collector in a coating or thin film form; (C) a porous separator disposed between the anode and the cathode; (D) a lithium-containing electrolyte in physical contact with the two electrodes; and (E) a lithium source disposed in at least one of the two electrodes when the cell is made. This new Li-ion cell exhibits an unprecedentedly high energy density.
摘要:
This invention provides a portable computing device powered by a surface-mediated cell (SMC)-based power source, the portable device comprising a computing hardware sub-system and a rechargeable power source electrically connected to the hardware and providing power thereto, wherein the power source contains at least a surface-mediated cell. The portable computing device is selected from a laptop computer, a tablet, an electronic book (e-book), a smart phone, a mobile phone, a digital camera, a hand-held calculator or computer, or a personal digital assistant.
摘要:
The present invention provides a battery or supercapacitor current collector which is prelithiated. The prelithiated current collector comprises: (a) an electrically conductive substrate having two opposed primary surfaces, and (b) a mixture layer of carbon (and/or other stabilizing element, such as B, Al, Ga, In, C, Si, Ge, Sn, Pb, As, Sb, Bi, Te, or a combination thereof) and lithium or lithium alloy coated on at least one of the primary surfaces, wherein lithium element is present in an amount of 1% to 99% by weight of the mixture layer. This current collector serves as an effective and safe lithium source for a wide variety of electrochemical energy storage cells, including the rechargeable lithium cell (e.g. lithium-metal, lithium-ion, lithium-sulfur, lithium-air, lithium-graphene, lithium-carbon, and lithium-carbon nanotube cell) and the lithium ion based supercapacitor cell (e.g, symmetric ultracapacitor, asymmetric ultracapacitor, hybrid supercapacitor-battery, or lithium-ion capacitor).
摘要:
An energy storage stack of at least two surface-mediated cells (SMCs) internally connected in parallel or in series. The stack includes: (A) At least two SMC cells, each consisting of (i) a cathode comprising a porous cathode current collector and a cathode active material; (ii) a porous anode current collector; and (iii) a porous separator disposed between the cathode and the anode; (B) A lithium-containing electrolyte in physical contact with all the electrodes, wherein the cathode active material has a specific surface area no less than 100 m2/g in direct physical contact with the electrolyte to receive lithium ions therefrom or to provide lithium ions thereto; and (C) A lithium source. This new-generation energy storage device exhibits the highest power densities of all energy storage devices, much higher than those of all the lithium ion batteries, lithium ion capacitors, and supercapacitors.
摘要:
Disclosed is a facile and cost effective method of producing nano silicon powder or graphene-doped silicon nano powder having a particle size smaller than 100 nm. The method comprises: (a) preparing a silicon precursor/graphene nano composite; (b) mixing the silicon precursor/graphene nano composite with a desired quantity of magnesium; (c) converting the silicon precursor to form a mixture of graphene-doped silicon and a reaction by-product through a thermal and/or chemical reduction reaction; and (d) removing the reaction by-product from the mixture to obtain graphene-doped silicon nano powder.