Abstract:
A method to recover water from the atmosphere is provided. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A foam media absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.
Abstract:
A system and method recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A media material absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. The configuration of the media material enables maximal water extraction and is dynamically configurable. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.
Abstract:
A system and method recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray, the concentration of the liquid desiccant may be dynamically changed based on changes within the system. A foam media absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.
Abstract:
A device recovers water from an ambient airstream. The device includes a chamber having a group of trays that hold respective amounts of liquid desiccant. A foam media element in each tray absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and control device operation. The desiccant trays may be selectively configurable in an array to best suit the intended installation. The trays may be arranged in column and row configurations, along with adjustable airflow patterns between each of the trays.
Abstract:
A multi-display device can interface with two or more different types of docking stations. The device can determine the type of dock and change the pin outs for a connector to interface with that dock. Once docked, the device can determine a charge status for the device and the dock to present the status to the user. Further, the dock can enter one of several modes, including a call receipt mode and an entertainment mode. The modes allow for expanded functionality for the device while docked. Two particular docks, the laptop dock and the smart dock, provide special functionality with the device.
Abstract:
Methods and devices for selectively presenting a user interface or “desktop” across two devices are provided. More particularly, a unified desktop is presented across a device and a computer system that comprise a unified system. The unified desktop acts as a single user interface that presents data and receives user interaction in a seamless environment that emulates a personal computing environment. To function within the personal computing environment, the unified desktop includes a process for docking and undocking the device with the computer system. The unified desktop presents desktops or windows based on the displays that were pre-existing before docking or undocking.
Abstract:
A mobile computing device with a mobile operating system and desktop operating system running concurrently and independently on a shared kernel without virtualization. The mobile operating system provides a user experience for the mobile computing device that suits the mobile environment. The desktop operating system provides a full desktop user experience when the mobile computing device is docked to a secondary terminal environment. The mobile computing device may be a smartphone running the Android mobile OS and a full desktop Linux distribution on a modified Android kernel.
Abstract:
A housing for a handheld computing device can include a metallic outer shell having a substantially flat base and a sidewall connected to a periphery of the base, the metallic outer shell having an inner surface and an outer surface and a polymeric portion nanomolded on the inner surface of the metallic outer shell in a predetermined location to provide rigidity to the metallic outer shell.
Abstract:
A multi-display device can interface with two or more different types of docking stations. The device can determine the type of dock and change the pin outs for a connector to interface with that dock. Once docked, the device can determine a charge status for the device and the dock to present the status to the user. Further, the dock can enter one of several modes, including a call receipt mode and an entertainment mode. The modes allow for expanded functionality for the device while docked. Two particular docks, the laptop dock and the smart dock, provide special functionality with the device.
Abstract:
A system and method to recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A foam media absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. A heat source adds heat to the chamber before and/or during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.