Abstract:
A movable stage system is configured to support an object subjected to a lithography process. A short stroke part (SS) is configured to support the object (W) and a long stroke part (LS) is configured to support the short stroke part. The short stroke part is movable over a relative small range of movement with respect to the long stroke part. The long stroke part is movable over a relative large range of movement with respect to a base support arranged to support the long stroke part. A shielding element (SE) is arranged between the short and long stroke parts. A position control system (PCS) maintains a substantially constant distance between the shielding element and the short stroke part.
Abstract:
An imprint lithography apparatus is disclosed that includes a first imprint template provided with pattern recesses and a second imprint template provided with pattern recesses, wherein the pattern recesses of the first imprint template are configured to form features on a substrate which interconnect laterally with features formed by the pattern recesses of the second imprint template, and wherein the pattern recesses of the second imprint template have a critical dimension which is three or more times greater than the critical dimension of the pattern recesses of the first imprint template.
Abstract:
A lithographic apparatus is disclosed having a removable adhesive film carrying a coating on at least a part of the apparatus. In an embodiment, a liquid supply system having a liquid confinement structure extending along at least part of a boundary of a space between a projection system and a substrate support is disclosed, wherein the film carrying the coating is on at least part of the liquid confinement structure.
Abstract:
A method for determining process window limiting patterns based on aberration sensitivity associated with a patterning apparatus. The method includes obtaining (i) a first set of kernels and a second set of kernels associated with an aberration wavefront of the patterning apparatus and (ii) a design layout to be printed on a substrate via the patterning apparatus; and determining, via a process simulation using the design layout, the first set of kernels, and the second set of kernels, an aberration sensitivity map associated with the aberration wavefront, the aberration sensitivity map indicating how sensitive one or more portions of the design layout are to an individual aberrations and an interaction between different aberrations; determining, based on the aberration sensitivity map, the process window limiting pattern associated with the design layout having relatively high sensitivity compared to other portions of the design layout.
Abstract:
A method to determine a curvilinear pattern of a patterning device that includes obtaining (i) an initial image of the patterning device corresponding to a target pattern to be printed on a substrate subjected to a patterning process, and (ii) a process model configured to predict a pattern on the substrate from the initial image, generating, by a hardware computer system, an enhanced image from the initial image, generating, by the hardware computer system, a level set image using the enhanced image, and iteratively determining, by the hardware computer system, a curvilinear pattern for the patterning device based on the level set image, the process model, and a cost function, where the cost function (e.g., EPE) determines a difference between a predicted pattern and the target pattern, where the difference is iteratively reduced.
Abstract:
A method including: determining a value of a characteristic of a patterning process or a product thereof, at a current value of a processing parameter; determining whether a termination criterion is met by the value of the characteristic; if the termination criterion is not met, determining a new value of the processing parameter from the current value of the processing parameter and a prior value of the processing parameter, and setting the current value to the new value and repeating the determining steps; and if the termination criterion is met, providing the current value of the processing parameter as an approximation of a value of the processing parameter at which the characteristic has a target value.
Abstract:
A lithographic apparatus includes a patterning device support to support a patterning device, the patterning device system including a moveable structure movably arranged relative to an object, a patterning device holder movably arranged relative to the movable structure to hold the patterning device, an actuator to move the movable structure relative to the object, and an ultra short stroke actuator to move the patterning device holder with respect to the movable structure; a substrate support to hold a substrate; a projection system to project a patterned radiation beam onto a target portion of the substrate; a transmission image sensor for measuring a position of the patterned radiation beam downstream of the projection system; and a calibrator for determining a relationship between magnitude of an applied control signal to the ultra short stroke actuator and resulting change in position of the patterned radiation beam and/or patterning device holder and/or patterning device.
Abstract:
A method of designing a feature guiding template for guiding self-assembly of block copolymer to form at least two features in a design layout for lithography, the feature guiding template including at least two portions joined by a bottleneck, the method including determining a characteristic of the feature guiding template based on at least a function of geometry of the feature guiding template including a value of a first width of at least one of the portions, a value of a second width of the bottleneck, or a value based on both the first width and the second width.
Abstract:
A method for generating radiation includes supplying a fuel to a discharge space, creating a discharge in the fuel to form a plasma, and reducing a volume defined by the plasma by controlling radiation emission by the plasma. The reducing includes supplying a substance including at least one of Ga, In, Bi, Pb or Al to the plasma to control the radiation emission.
Abstract:
A system for removing contaminant particles from the path of the beam of EUV radiation is provided in which at least a first AC voltage is provided to a pair of electrodes on opposite sides of the path of the beam of EUV radiation as a first stage of a regime of voltages and, as a second stage of the regime of voltages, a DC voltage is provided to the electrodes.